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Course Description    

Course Name: 
Logic Design 
Course Code:  
 
Semester / Year: 
First Semester/ First year 
Description Preparation Date: 
9/5/2025 
Available Attendance Forms:  
Attendance only 
Number of Credit Hours (Total) / Number of Units (Total) 
60  hours (theoretical + practical) at a rate of 4 hours per week (2 theoretical + 2 practical) 
Course administrator's name (mention all, if more than one name)  
Name: Ethar Abduljabbar Hadi  
Email: ethar.hadi@stu.edu.iq 
Course Objectives  

1. Teaching the student the components of the computer 
2. Teaching the student the types of numerical systems and how to convert  

between them. 
3. Teaching the student about logic gates and how to design logical circuits 
4. Teaching the student how to simplify logical  circuits using the Boolean 

 algebra method and the Karnaugh map method. 
5. Teaching the student how to design the logical circuits found in the 

 calculator in  their simple and complex types.  
6. Teaching the student how to examine and represent these logical circuits  

 

mailto:ethar.hadi@stu.edu.iq


 

using special programs for that. 
7. Developing Basic Understanding of digital circuits: Enabling students to 

understand the fundamental principles of digital circuits, including basic 
 electronic components such as adders, digital gates, and comparator. 

8. Developing Practical Skills: Providing hands-on training through laboratory 
experiments, allowing students to acquire the skills necessary to build and 
 test electronic circuits. 

9. Enhancing Critical Thinking: Encouraging students to engage in critical and 
analytical thinking when solving problems related to electronics. 

Teaching and Learning Strategies  
1. Cooperative concept planning education strategy. 
2. Brainstorming Teaching Strategy. 
3. Note-taking Sequence Strategy. 

 

 

 

 

Course Structure 
  

Hours  
 
Required 
Learning 
Outcomes  

 
Unit or subject name  

 
Learning method  

 
Evaluation 
method  

1 

2 
 
3 
4 
 
5 
6 
7 
8 
9 
10 

4hours 

4hours 
 
4hours 
4hours 
 
4hours 
4hours 
4hours 
4hours 
4hours 
4hours 

1.Understanding 
digital logic  

circuits Applications 

2.Developing  

Critical Thinking 

 and Problem-
Solving Skills 
through Circuit 
Analysis and  

Fault Detection. 

4.Analyzing logic 

 Circuits 

 

 

1- Number Systems 

2- Conversion among 
Number Systems 

3. Binary operations 

4. SubtractionUsing 
Complement 

 

5. Logic Gates 

6. Boolean Algebra 

7. De Morgan’s Theorem 8. 

8. Standard Forms 

9.Karnaugh Map  

10.Digital Binary Adders 

1.Conducting  

laboratory experiments 
to build and test 

 digital circuits. This 
enhances theoretical 
understanding 

 and develops practical 
skills. 
 

2.Seeking feedback 

 from instructors and 
peers to identify 
strengths and 
weaknesses. 

 

 

 

Daily, 

Weekly,  
Mid term  

Exams, and 

 Final Term 
Exam. 

W
ee

ks
 



 

11 
12 
13 
14 

4hours 
4hours 
4hours 
4hours 
 

 

 

 

 

 

11. Digital Binary 
Subtractors 

12. Flip-Flops 

13. Flip-Flops 

14-15. Shift Registers 

 

3.Reviewing concepts 
periodically and 
applying them  

to new problems to 
reinforce memory 

 and understanding. 
 

4.Using educational 
software and 

 interactive 
applications to better 
understand concepts, 
such as 

 circuit simulations. 

5.Encouraging self-
research on new  

topics in electronics 
and exploring  

recent developments. 

Course Evaluation 
Distributing the score out of 100 as follows: 

 20 points for Midterm Theoretical Exams. 

 20 points for Midterm Practical Exams. 

 10 points for Daily Exams, homework and Assessment. 
 50 points for the Final Exam. 

Learning and Teaching Resources  
Required textbooks (curricular books, if any) Holdsworth, Brian, and Clive Woods. Digital logic 

design. Elsevier, 2002. 

Main references (sources) Alam, Mansaf, and Bashir Alam. Digital Logic 
Design. PHI Learning Pvt. Ltd., 2015. 

Recommended books and references (scientific 
journals, reports...) 

Dally, William James, and R. Curtis Harting. Digital 
design: a systems approach. Cambridge University 
Press, 2012. 

Electronic References, Websites 
https://www.geeksforgeeks.org/digital-logic/digital-

electronics-logic-design-tutorials/ 

 https://www.electronics-tutorials.ws/_1.html 
https://www.geeksforgeeks.org/digital-logic/flip-flop-

types-their-conversion-and-applications/#sr-flip-flop 

 

 

https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/
https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/
https://www.electronics-tutorials.ws/_1.html
https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-applications/#sr-flip-flop
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1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Techniques 

  

1 / B –Rationale :-  
  

Understanding number systems is crucial for gaining 

comprehensive knowledge of how data is represented, processed, 

and transmitted in digital systems, and enabling students to 

efficiently design, configure, troubleshoot, and secure computer 

systems and networks., which is why I have created this unit .  

  

1 / C –Central Idea :-  
1 – Types of numbers systems   

2 – Representation of numbers systems  

3 –Conversion numbers systems . 

4 – Binary code 

5 -The operations on Binary  

6- Representation methods. 

  

1 / Overview 

  



 

 

1 / D – Performance Objectives  
After studying the first unit, the student will be able to:-  

1. Know the types of Number systems  

2. Representations of numbers systems  

3. Convert between the types of numbers of systems 

4. Know about Binary code. 

5. Understand the operations on Binary. 

6. Understand the representation methods. 

 

 
  

Why do we need to study the number 

system? 

 

 
 

  

2 /  Pretest 
 : 

    

  

       



 

 

 

The numeric system we use daily is the decimal system, but 

this system is not convenient for machines since the information is 

handled codified in the shape of on or off bits; this way codifying 

takes us to the necessity of knowing the positional calculation 

which will allow us to express a number in any base where we need 

it. 

 

1.Radix number systems 
 

A base of a number system or radix defines the range of values 

that a digit may have.  

 

  A-Decimal Number System :-  

    This system is composed of 10 numbers or symbols, these 10 

symbols are:  

    0     1     2     3     4     5    6     7     8     9  

  These symbols are called digits.  

   The decimal system, also called base 10 system, because it has 

10 digits which is a naturally result of the fact that man has 10 

fingers.  

3 /  Numbers Systems 
  : - 

    

  

       



 

B- Binary Number System  

 

In the binary system or base 2, there can be only two values 

for each digit of a number, either a "0" or "1".   

 

 

C- Octal Number System  

This system is composed of 8 numbers or symbols:  

0   1   2   3   4   5   6   7  

This is a base -8 system.  

 

For counting after 7 

10 ,11,12,13,14,15,16,17, 
 
20,21,22,23,24,25,26,27, 
 
30,31,……………….37, 
 
40,…………………..47, 
 
50,………………….57, 
 
60,61,62,63,64,65,66,67, 
 
70,71,72,73,74,75,76,77, 
 
100,101,102,…………107 
 
110,111,112,…………117. 
 
 

  



 

D- Hexa- Decimal System  

This system is composed of 16 numbers or symbols  (digit):  

0   1   2   3   4   5   6   7  8  9  A  B  C  D  E  F  

Where “A” stands for 10, “B” for 11 and so on. 

It is a base – 16 systems   

 

For counting after F 

10 ,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F, 
 
20,21,22,23,24,25,26,27,28,29,2A,2B,…………..2F, 
 
30,31,………………………..,3A,……………….3F 
. 
. 
90,91,92,……………………..99,9A,9B,……………9F, 
 
A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,AA,AB,,AC,AD,AE,AF, 
 
B0,B1,………………………….B9,BA,………………….BF, 

 

 

 

 

 

 

 

 

 



 

2. Conversion among radices 

  

A. Convert from Decimal to Any Base 
 

 

 Let's express a decimal number 1341 in binary notation. Note 

that the desired base is 2, so we repeatedly divide 

 the given decimal number by 2. 

 
Quotient Remainder 

----------------------------- 

1341/2 = 670 1 ----------------------+ 

670/2 = 335 0 --------------------+ | 

335/2 = 167 1 ------------------+ | | 

167/2 = 83 1 ----------------+ | | | 

83/2 = 41 1 --------------+ | | | | 

41/2 = 20 1 ------------+ | | | | | 

20/2 = 10 0 ----------+ | | | | | | 

10/2 = 5 0 --------+ | | | | | | | 

5/2 = 2 1 ------+ | | | | | | | | 

2/2 = 1 0 ----+ | | | | | | | | | 

1/2 = 0 1 --+ | | | | | | | | | |(Stop when the 

    | | | | | | | | | | | quotient is 0) 

    1 0 1 0 0 1 1 1 1 0 1 (BIN; Base 2) 

 

Let's express the same decimal number 1341 in octal notation. 
Quotient Remainder 

----------------------------- 

1341/8 = 167 5 --------+  
167/8 = 20 7 ------+ | 

20/8 = 2 4 ----+ | | 

2/8 = 0 2 --+ | | | (Stop when the quotient is 0) 

  | | | |   

  2 4 7 5 (OCT; Base 8) 

 

Let's express the same decimal number 1341 in hexadecimal notation. 
Quotient Remainder 

----------------------------- 

1341/16 = 83 13 ------+  

83/16 = 5 3 ----+ |  

5/16 = 0 5 --+ | | 

| | | 

5 3 D 

(Stop when the quotient is 0) 

 

(HEX; Base 16) 



 

 

In conclusion, the easiest way to convert fixed point numbers to 

any base is to convert each part separately. We begin by separating 

the number into its integer and fractional part. The integer part is 

converted using the remainder method, by using a successive 

division of the number by the base until a zero is obtained. At each 

division, the reminder is kept and then the new number in the base 

r is obtained by reading the remainder from the last remainder 

upwards. 

 

The conversion of the fractional part can be obtained by 

successively multiplying the fraction with the base. If we iterate 

this process on the remaining fraction, then we will obtain 

successive significant digit. These methods form the basis of the 

multiplication methods of converting fractions between bases 

 

Example. Convert the decimal number 3315 to hexadecimal 

notation. What about the hexadecimal equivalent of  

the decimal number 3315.3 

Solution: 
Quotient Remainder 

----------------------------- 

3315/16 = 207 3 ------+  

207/16 = 12 15 ----+ |  

12/16 = 0 12 --+ | | 

| | | 

C F 3 

(Stop when the quotient is 0) 

 

(HEX; Base 16) 

 
 



 

(HEX; Base 16) 

Product Integer Part 0.4 C C C ... 

--------------------------------  | | | |        

0.3*16 = 4.8 4 ----+ | | | | | 

0.8*16 = 12.8 12 ------+ | | | | 

0.8*16 = 12.8 12 --------+ | | | 

0.8*16 = 12.8 12 ----------+ | | 

: ---------------------+ 

: 

Thus, 3315.3 (DEC) --> 

CF3.4CCC... (HEX) 

 

Example: convert the following decimal numbers to the equivalent 

binary numbers (36 , 39.5).  

 

                       Q       R 

------------------------------------------- 

 36/2    =          18      0                                                          

 18/2    =           9       0  

  9/2     =           4       1  

  4/2     =           2       0  

 2/2      =           1       0  

1/2      =            0       1                                                     

  

  

   36 (base 10) =           100100  

 

 

 

 

 

 

 

 

 

 

  



 

                  Q       R 

------------------------------------------- 

  39/2 =            19       1                      

  19/2 =            9        1  

  9/2 =              4        1  

  4/2 =              2        0  

  2/2 =              1        0  

1/2 =              0         1    

  

  

   39.5 (base 10) ==      100111   

                                   10  

      0.5 x 2 = 1  

         0 x 2 = 0  

The binary equivalent of (39.5)10 is (100111.10)2  

  

Example: convert the following decimal number to equivalent  

octal number (266)10 & (20.75)10  

  

266/8 = 33     r =2  

33/8 = 4         r =1  

4/8 = 0           r =4  

  

    (266)10   =                    412  

  

  

20/8 = 2        r =4                    0.75 x 8 = 6.0  

2/8 = 0          r =2  

            The equivalent octal number is (24.6)8  

  

 
 

 



 

B.  Convert From Any Base to Decimal 
 

Let's think more carefully what a decimal number means. For 

example, 1234 means that there are four boxes (digits); and 

there are 4 one's in the right-most box (least significant digit), 3 

ten's in the next box, 2 hundred's in the next box, and finally 1 

thousand's in the left-most box (most significant digit). The total 

is 1234: 
 

Original Number: 1 2 3 4 

 | | | | 

How Many Tokens: 1 2 3 4 

Digit/Token Value: 1000 100 10 1 

Value: 1000 + 200 + 30 + 4 = 1234 

 

or simply, 1*1000 + 2*100 + 3*10 + 4*1 = 1234 

Thus, each digit has a value: 10^0=1 for the least significant 

digit, increasing to 10^1=10, 10^2=100, 10^3=1000, and so 

forth. 

 

Likewise, the least significant digit in a hexadecimal number 

has a value of 16^0=1 for the least significant digit, increasing 

to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096  

 
Example. Convert 11001. 0101 expressed in a Binary notation to decimal. 
 

                        1                1         0           0          1     .        0            1              0            1 

                      

                         4               3         2           1          0            -1             -2            -3            -4 

              

                   2^4         2^3       2^2         2^1      2^0            2^-1       2^-2      2^-3       2^-4    

 
       

            =     1*24      +  1*23            +  0*22      +  0*21            +  1*20     +0*2-1           + 1*2-2 +0*2-3           + 1*2-4 

            =     1*16   +  1*8      +   0*4    +  0*2       +  1*1     + 0* ½ + 1* ¼ + 0*1/8      +1*1/16   

 

            =     16 + 8+1+ 1/4+ 1/16  

             = 25 + 0.25 + 0.0625 

               =25.312 



 

 

Example. Convert 234.14 expressed in an octal notation to 

decimal. 

 
                           2           3          4     .        1            4 

 

 

 

                          2               1         0          -1             -2 

 

                         8^2         8^1      8^0           8^-1       8^-2 

                =     2*82      +  3*81            +  4*80     +1*8-1           + 4*8-2  

                =     2*64   +  3*8      +   4*1    +1/8       +4/64  

 

                 = 128        + 24         +   4   +    0.125    +   0.062          =156.1875 

 

 

 

Examples:  
 

1) Decimal :-   

  

(124)10 = 4 x 100 + 2 x 101 + 1 x 102  

   

(252.512)10 = 2 x 100 + 5 x 101 + 2 x 102 + 5 x 10-1 + 1 x 10-2 +       

2 x 10-3   

2)Binary :-  

  

(1011101)2 = 1 x 20 + 0 x 21 + 1 x 22 + 1 x 23 + 1 x 24 + 0 x 25 + 1 

x 26  

                   = (93)10  

(101.11)2 = 1 x20 + 0 x 21 + 1 x 22 + 1 x 2-1 + 1 x 2-2   

                =(5.75)10  

  

 



 

3) Octal :-  

  

(537)8 = 7 x 80 + 3 x 81 + 5 x 82  

           =(351)10  

  

4) Hexa- Decimal :-  

  

(A01B)16 = 11 x 160 + 1 x 161 + 0 x 162 + 10 x 163  

                =(40987)10  

  

       

  

C. Relationship between Binary - Octal and 

Binary-hexadecimal 

There is a direct correspondence between the binary system and 

the octal system, with three binary digits corresponding to one octal 

digit. Likewise, four binary digits translate directly into one 

hexadecimal digit. 

 

Octal-to-Binary:-  

     The conversion from octal to binary is performed by converting 

each octal digit to its 3-bit binary equivalent. The eight possible 

digits are converted as indicated in the following table:  

 

Octal digit  0  1  2  3  4  5  6  7  

Binary digit  000  001  010  011  100  101  110  111  

  

  



 

  

Example: convert the following octal number to it's equivalent 

binary number (472)8  

  

                    4          7          2  

                  100      111      010  

The equivalent binary number is (100111010)2  

  

Binary-to-octal :-  

  

1. group into 3's starting at least significant symbol (if the number 

of bits is not evenly divisible by 3, then add 0's at the most 

significant end)  

2. write 1 octal digit for each group  

  

Example:  

  100 010 111  (binary)  

    4     2     7     (octal)  

    

   10 101 110  (binary)  

       2    5    6     (octal)  

 

  

Example:-  

             convert (177)10 to its 8-bit binary equivalent by first 

converting to octal.  

  

Solution:-  

                177/8 = 22 + reminder of 1  

                  22/8 = 2 + reminder of   6  

                    2/8 = 0 + reminder of   2  

  



 

         (177)10  =  (261)8  

  

                                 2      6      1  

                               010  110  001  

   

       (177)10 = (261)8 = (010110001)2      

  
    

 

 

 

 
 

The Octal number is (1274) 

 

 
 

 

 

 



 

Hexadecimal -to-Binary :-  

     Each hexadecimal digit is converted to it's 4-bit binary 

equivalent as show in the table below :  

 

Hexadecimal  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  

Binary  0000  0001  0010  0011  0100  0101  0110  0111  1000  1001  1010  1011  1100  1101  1110  1111  

 

Example:  

  

        3      9       C      8  

    0011 1001 1100 1000  

  

  

  

Binary-to-hexadecimal :-  

   This conversion is just the reverse of the Hexadecimal-to-Binary 

conversion process.   

   

 Example:  

       

       1001 1110 0111 0000  

          9       E       7       0  

  

    1 1111 1010 0011  

     1    F       A      3  

 



 

 
The conversion methods can be used to convert a number from 

any base to any other base, but it may not be very intuitive to 

convert something like 513.03 to base 7. As an aid in performing 

an unnatural conversion, we can convert to the more familiar 

base 10 form as an intermediate step, and then continue the 

conversion from base 10 to the target base. 

 
 

Example : Convert the Octal number (752) to Hexadecimal 

number . 

 

Step1 : 

Octal to Binary Conversion  

       7         5        2 

   (111     101     010)  

So the binary equivalent  111101010 

 

Step2 : 

Binary to Hexadecimal Conversion  

0001 1110   1010 

 1         F        A 

 

 

 



 

Example : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Binary Codes 

 

Binary codes are one of the important concepts in digital 

electronics. A binary code is a type of digital code consisting of two 

digits, 0 and 1. Binary codes act as the primary language in any 

digital computing system. Binary codes can represent different 

types of information such as numbers, letters, images, videos, etc. 

 

 

All digital system can understand and manipulate information 

expressed in binary language only. In the case of binary codes, each 

digit is called a binary digit or bit. 

 

 

Binary codes represents information using 0 and 1. In a digital 

system, the binary codes are organized into segments 

like bits or bytes. A bit is either a binary 0 or 1. When 8 bits are 

grouped together, then it is called a byte. Each byte represents a 

piece of information in a digital system. 

 

Types of Binary Codes 

Binary codes can be classified into the following major types  

• Weighted Binary Codes 

• Non-weighted Binary Codes 

• Alphanumeric Code 

• Binary Coded Decimal (BCD) 

• Error Detecting Code 

• Error Correction Code 

 

 

 



 

Weighted Binary Codes 

Weighted binary codes are a type of binary code in which each 

bit position has a specific weight associated with its positional value. 

For example, let a 4-bit weighted binary code 1011. The value of the 

code is, 

1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 

1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 

8 + 0 + 2 + 1 = 11 

It is clear that the rightmost bit has a positional weight of 20 = 1, 

whereas the leftmost bit has a positional weight of 23 = 8. 

 

Examples of weighted binary codes are 8421 BCD code, 5211 

code, 2421 code, etc. 

 

Binary-Coded-Decimal (BCD) code :-  

In computing and electronic systems, binary-coded decimal 

(BCD) is an encoding for decimal numbers in which each digit is 

represented by its own binary sequence. Its main virtue is that it 

allows easy conversion to decimal digits for printing or display and 

faster decimal calculations. Its drawbacks are the increased 

complexity of circuits needed to implement mathematical 

operations and a relatively inefficient encoding. It occupies more 

space than a pure binary representation.In BCD, a digit is usually 

represented by four bits which, in general, represent the 

values/digits/characters 0-9 

 

To BCD-encode a decimal number using the common encoding, 

each decimal digit is stored in a four-bit nibble. 

  

Decimal  0  1  2  3  4  5  6  7  8  9  

BCD  0000  0001  0010  0011  0100  0101  0110  0111  1000  1001  



 

  

 The position weights of the BCD code are 8, 4, 2, 1. 

Example: The BCD of decimal 874  

             8          7         4  

          1000    0111    0100  

  

Example:  the BCD encoding for the number 127 would be: 
 

0001 0010 0111 

 

It is very important to understand the difference between the 

conversion of a decimal number to binary and the binary coding 

of a decimal number. In each case, the final result is a series of 

bits. The bits obtained from conversion are binary digit. Bits 

obtained from coding are combinations of 1’s and 0’s arranged 

according to the rule of the code used. 

e.g. the binary conversion of 13 is 1101; the BCD coding of 13 is 

00010011 

The main advantage of binary coded decimal is that it allows easy 

conversion between decimal (base-10) and binary (base-2) form. 

However, the disadvantage is that BCD code is wasteful as the 

states between 1010 (decimal 10), and 1111 (decimal 15) are not 

used. Nevertheless, binary coded decimal has many important 

applications especially using digital displays. 

 

Advantages of BCD Codes 

• BCD codes are very similar to the decimal system. 

• We need to remember the binary equivalent of the decimal 

numbers 0 to 9 only. 

 

Disadvantages of BCD Codes 

• The addition and subtraction of BCD codes follow different 

rules. 

• BCD arithmetic is a little more complicated. 



 

• BCD needs more number of bits than binary to represent the 

decimal number. e.g. the binary conversion of 13 is 1101; the 

BCD coding of 13 is 00010011. So, BCD is less efficient 

than binary. 

 

Non-Weighted Binary Codes 

In digital electronics, the type of digital or binary codes in 

which each bit position does not have a specific weight associated 

with it is known as a non-weighted binary code. 

 

In non-weighted binary codes, the value of the bit does not depend 

on the position within the number. Each bit position has an equal 

positional value. 

 

Examples of non-weighted binary codes include Excess-3 code and 

Gray code. 

 

Excess-3-code :-  

It is performed in the same manner as BCD except that 3 is 

added to each decimal digit before encoding it in binary. Thus, the 

code of decimal 0 is 0011, that of 6 is 1001, etc. The following table 

shows this code.  

 

 
Decimal  

0  1  2  3  4  5  6  7  8  9  

Ex-3code  
0011  0100  0101  0110  0111  1000  1001  1010  1011  1100  

  

 



 

Gray code :-  

   Gray codes are a type of non-weighted code. They are not 

arithmetic codes, which means there are no specific weights 

assigned to the bit position. 

 

Gray codes have a very special feature that, only one bit will change 

each time the decimal number is incremented (see the figure 

below). As only one bit changes at a time, gray codes are also 

known unit distance code. 

 

The following table shows this code.  

  
Decimal  

0  1  2  3  4  5  6  7  8  9  

Gray-code  
0000  0001  0011  0010  0110  0111  0101  0100  1100  1101  

   

  

  

 

 

 

 

 

 

 



 

Operations in Binary  

1. Addition in Binary  

 

Now that we know binary numbers, we will learn how to add 

them. Binary addition is much like your normal everyday addition 

(decimal addition), except that it carries on a value of 2 instead of 

a value of 10. 

 

For example: in decimal addition, if you add 8 + 2 you get ten, 

which you write as 10; in the sum this gives a digit 0 and a carry 

of 1. Something similar happens in binary addition when you add 

1 and 1; the result is two (as always), but since two is written as 

10 in binary, we get, after summing 1 + 1 in binary, a digit 0 and a 

carry of 1. Therefore in binary: 

 
 

No. of state A       +       B Carry Sum 

0 0       +       0  0 0 

1 0       +       1  0 1 

2 1       +       0  0 1 

3 1       +       1 1 0 
 

 

 

Problem: 100101 + 10101 = ?. 

Answer: 100101 + 10101 = 111010. 
 

 

Explanation:  

                                               1                         1 

                     1 0 0 1 0 1 

+              1 0 1 0 1 

---------------------------------------------------------------------- 

               1              1              1          0            1           0 

 



 

 

Example : 
 

 
 

 

 

 

Example : 
 

 

Example : 

    

1011.01+11.011= 1110.101 

                                                                          11    1 

                                                                        1011.01 

                                                                   +       11.011  

                                                             ------------------------- 

                                                                        1110.101 

 

 

 

 



 

2. Subtraction in Binary  

 

Subtraction and Borrow, these two words will be used very 

frequently for the binary subtraction. There are four rules of binary 

subtraction. 

 

No. of state A       -       B Borrow Subtract 

0 0       -       0  0 0 

1 0       -       1  1 0 

2 1       -       0  0 1 

3 1       -       1 0 0 

 

Example : 

 

0011010-001100=00001110 
 

                                                                           0  10 

                                                                                0   10                              Borrow 

                                                             0     0    1    1    0   1   0                    =26 

                                                             0     0    0    1    1   0   0                    =12 

 

                                                        ----------------------------------------- 

                                                             0     0     0   1    1   1   0                 = 14 

 

Example : 
                                                                            

                                                                          0   10                   Borrow 

                                                                    1    1    0     0            =12            

                                                              -    1     0   1      0            =10 

 

                                                        ----------------------------------------- 

                                                                   0      0   1     0            =2      

Example: 
 

                                                                              1   10   10  

                                                                         0  10  0       0  10           borrow 

                                                              1    0   1   0   1   .   1   0   1 

               -           1   0   1   1   .   1   1 

             ------------------------------------- 

                           1   0    0   1  .   1   1   1 



 

3. Multiplications in Binary : 

 

Binary multiplication is similar to decimal multiplication. It is 

simpler than decimal multiplication because only 0s and 1s are 

involved. There are four rules of binary multiplication. 

 

No. of state A              B Multiplication 

0 0             0  0 

1 0              1  0 

2 1              0  0 

3 1              1 1 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

4. Division in Binary  

The binary division operation is similar to the base 10 decimal 

system, except the base 2. The division is probably one of the most 

challenging operations of the basic arithmetic operations. There are 

different ways to solve division problems using binary operations. 

Long division is one of them and the easiest and the most efficient 

way.  

 

Binary Division Rules 

 

The binary division is much easier than the decimal division when 

you remember the following division rules. The main rules of the 

binary division include: 

• 1÷1 = 1 

• 1÷0 = Meaningless 

• 0÷1 = 0 

• 0÷0 = Meaningless 

 

Similar to the decimal number system, the binary division is 

similar, which follows the four-step process: 

• Divide 

• Multiply 

• Subtract 

• Bring down 

Important Note: Binary division follows the long division method 

to find the resultant in an easy way. 

Comparison with Decimal Value 

(01111100)2 = (1111100)2 = 12410 

https://byjus.com/maths/binary-operation/


 

(0010)2 = (10)2 = 210 

You will get the resultant value as 62 when you divide 124 by 2. 

So the binary equivalent of 62 is (111110)2 

(111110)2 = 6210 

Both the binary and the decimal system produce the same result. 

Binary Division Examples 

 

Example 1. 

Question: Solve 01111100 ÷ 0010 

Solution: 

Given 

01111100 ÷ 0010 

Here the dividend is 01111100, and the divisor is 0010 

Remove the zero’s in the Most Significant Bit in both the dividend 

and divisor, that doesn’t change the value of the number. 

So the dividend becomes 1111100, and the divisor becomes 10. 

Now, use the long division method. 



 

 
 

So, 01111100 ÷ 0010 = 111110 

 

Example 2: Solve using the long division method: 101101 ÷ 101 

Solution: 

 
 



 

Representation methods 

1.Signed Magnitude Representation 

 

The signed magnitude (also referred to as sign and magnitude) 

representation is most familiar to us as the base 10 number system. 

A plus or minus sign to the left of a number indicates whether the 

number is positive or negative as in +12 or -12. In the binary signed 

magnitude representation, the leftmost bit is used for the sign, 

which takes on a value of 0 or 1 for ‘+’ or ‘-’, respectively. The 

remaining bits contain the absolute magnitude. 

 

Consider representing (+12) and (-12) in an eight-bit format:  

B7 B6 B5 B4 B3 B2 B1 B0 

        
 

 

 

B7 : for the sign of number  

      If the number is (+)    =>  B7=0 

      If the number is (-)    =>  B7=1 

B0-B6: Is for the magnitude  

 

 

 



 

(+12)10 = (00001100)2 

B7 B6 B5 B4 B3 B2 B1 B0 

0 0 0 0 1 1 0 0 
 

(−12)10 = (10001100)2 

 

B7 B6 B5 B4 B3 B2 B1 B0 

1 0 0 0 1 1 0 0 
 

 

The negative number is formed by simply changing the sign bit in 

the positive number from 0 to 1. Notice that there are both positive 

and negative representations for zero: +0= 00000000 and 

 -0= 10000000. 

 
 

B7 B6 B5 B4 B3 B2 B1 B0 
0 0 0 0 0 0 0 0 

 

B7 B6 B5 B4 B3 B2 B1 B0 
1 0 0 0 0 0 0 0 
 

 

 

 

 

 

 

 

 



 

2.One’s Complement Representation 

 

The one’s complement operation is trivial to perform: convert 

all of the 1’s in the number to 0’s, and all of the 0’s to 1’s. We can 

observe that in the one’s complement representation the leftmost 

bit is 0 for positive numbers and 1 for negative numbers, as it is for 

the signed magnitude representation. This negation, changing 1’s 

to 0’s and changing 0’s to 1’s, is known as complementing the bits.  

Consider again representing (+12)10 and (-12)10 in an eight-bit 

format, now using the one’s complement representation: 

 

(+12) in decimal  = (00001100) in Binary 

 

(-12) in decimal   = (11110011) in Binary 

 

Note again that there are representations for both +0 and -

0, which are 00000000 and 11111111, respectively. As a result, 

there are only 28 - 1 = 255 different numbers that can be 

represented even though there are 28 different bit patterns. 

 

The one’s complement representation is not commonly used. 

This is at least partly due to the difficulty in making comparisons 

when there are two representations for 0. There is also additional 

complexity involved in adding numbers. 

 



 

3. Two’s Complement Representation 

 

The two’s complement is formed in a way similar to forming 

the one’s complement: complement all of the bits in the number, 

but then add 1, and if that addition results in a carry-out from the 

most significant bit of the number, discard the carry-out. 

 

Examination of the fifth column of Table above shows that in 

the two’s complement representation, the leftmost bit is again 0 for 

positive numbers and is 1 for negative numbers. However, this 

number format does not have the unfortunate characteristic of 

signed-magnitude and one’s complement representations: it has 

only one representation for zero. To see that this is true, consider 

forming the negative of (+0)10, which has the bit pattern: (+0)10 = 

(00000000)2 

 

Forming the one’s complement of (00000000)2 produces 

(11111111)2 and adding 

 

1 to it yields (00000000)2, thus (-0)10 = (00000000)2. The 

carry out of the leftmost position is discarded in two’s complement 

addition (except when detecting an overflow condition). Since 

there is only one representation for 0, and since all bit patterns are 



 

valid, there are 2^8 = 256 different numbers that can be 

represented. 

 

Starting with (+12)10 =(00001100)2, 

 

1’s complement, or negate the number, producing (11110011)2 

 

Now add  one  

 

producing (11110100)2, and 

thus (-12)10 = (11110100)2: 

       (+12)10 = (00001100)2 

(-12)10 = (11110100)2 

 

There is an equal number of positive and negative numbers 

provided zero is considered to be a positive number, which is 

reasonable because its sign bit is 0. The positive numbers start at 0, 

but the negative numbers start at -1, and so the magnitude of the 

most negative number is one greater than the magnitude of the most 

positive number. The positive number with the largest magnitude 

is +127, and the negative number with the largest magnitude is -

128. There is thus no positive number that can be represented that 

corresponds to the negative of -128. If we try to form the two’s 



 

complement negative of -128, then we will arrive at a negative 

number, as shown below: 

 
(-128)10 = (10000000)2 
(-128)10 = (01111111 
(-128)10 + (+0000001)2 
(-128)10 ——————)2 
(-128)10 = (10000000)2 

 

 

(0)                       =    (0 0 0 0 0 0 0 0 ) 

       1’s complement       =    ( 1 1 1 1 1 1 1 1) 

       Add 1                       = +( 0 0 0 0 0 0 0 1) 

      The 2’s complement  =   (0 0 0 0 0 0 0 0 ) 

 

The two’s complement representation is the representation most 

commonly used in conventional computers. 

 

 

 

 

 

 

 

 



 

Subtraction using Complements 

-Binary Subtraction Using 2's Complement 

 

What is a 2 's Complement? 

To implement this method for subtracting two binary numbers, 

the first step is to find the 2’s complement of the number to be 

subtracted from another number. To get the 2’s complement, first 

of all, 1’s complement is found, and then 1 is added. The addition 

is the required 2’s complement.  

 

Suppose we need to find the 2’s complement of the binary 

number 10010. First, find 1’s complement. To find this, replace all 

1 to 0 and all 0 to 1. Therefore, 1’s complement of 10010 will be 

01101. Add 1 to this, and we will get the 2’s complement, i.e. 

01110. 

 

To learn how to subtract binary numbers using 2's 

complement, which is the subtraction of a smaller number from a 

larger number using 2’s complement subtraction, the following 

steps are to be followed: 

• Step 1: Determine the 2’s complement of the smaller number 

• Step 2: Add this to the larger number. 

• Step 3: Omit the carry. Note that there is always a carry in 

this case. 



 

 

The following example illustrates the above-mentioned steps:  

Exampe: Subtract (1010)2 from (1111)2 using 2's complement 

method. 

Ans: 

Step 1: 2's complement of (1010)2 is (0110)2. 

Step 2: Add (0110)2 to (1111)2.  

This is shown below: 

 
Solved Examples 

Q 1. 10110 - 11010 

Ans: 11010 has a 2s complement of (00101+1) or 00110. 

Add the 2's complement to the minuend (10110+00110) or 11100. 

Now taking its complement; 

The solution is (00011+1)= - (00100)  

Q 2. 10110-01111 

Ans: 01111's 2s complement is 10001. 

The minuend plus the complement of two (10110-10001) equals 

100111. 

The response is 00111.  

Q 3. 0100-11101 

Ans: 11101's 2s complement is 00011 

https://www.vedantu.com/maths/minuend


 

The minuend plus the complement of two (10100- 00011) equals 

10111. 

Since there is no carry here, the response is 01001.  

Q 4. 110101 - 101001 

Ans: 101001's complement in 2 is 010111 

(110101-010111) Add the minuend and the 2's complement to get 

1001100. 

Carry, the result's leftmost bit is a 1 and is ignored. 

The response is 001100.  

  

  

 
  

1. Suppose you are in base 7 Numeric System, write the 

basic digit of this system and suggest a code for it . 

2. convert (423)10 to hexadecimal.    

 

  

  

4 / P ost 
  test : - 

    

key answer 
  : - 

  

  

  

   post   test   : -   

1 .      0 1 2 3 4 5 

6 ,  

  

2 .   1 A 7   



 

  

  
  

1- Convert (641)8 to decimal (Ans. 369).  

2- Convert (146)10 to octal then from octal to binary (Ans.  

222 and 010010010).  

3- Convert (10011101)2 to octal (Ans. 235).  

4- Write the next three numbers in this octal counting sequence: 

624, 625, 626, ….., ….., ……  

5- Convert (975)10 to binary by first converting to octal (Ans. 

1111001111).  

6- Convert binary 1010111011 to decimal by first converting to 

octal (Ans. 699).  

    7-Convert (24CE)16 to decimal (Ans. 9422).  

    8-Convert (3117)10 to hex, then from hex to binary (Ans. C2D   

       and 110000101101)  

    9-Convert (1001011110110101)2 to hex (Ans 97B5).  

   10-Write the next four numbers in this hex counting sequence:    

        E9A, E9B, E9C, E9D, ….., ……., ……, …….  

   11-Convert (3527)8 to hex (Ans. (757)16).  

   12-  1001 – 0100   .Ans: 0101  

   13- 0100 – 1011 . Ans: 1011  

   14- 0110 – 0100 . Ans: 0010  

   15-10110- 11101  . Ans: 00111  

   16-  110-101  .Ans: 001  

    17. By using Signed Magnitude Representation method, 

represent (+81) and (-81 

  

      
5/ HomeWorks: - 



 

Ministry of high Education and Scientific Research 

Southern Technical University 
Technological institute of Basra 

Department of Computer Networks and Software Techniques 

 

 
  

  

 

 

  

                         Learning package  

                                                                In  

 

    Logic  Gates 

For  

  
   Students of First Year  

  

 
  

 
 

By 

                              Ethar Abduljabbar Hadi 

       Assistant Lecturer 

Dep. Of Computer Networks and Software Techniques 
2025  



 

 

 

  

1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Techniques 

  
  

1 / B –Rationale :-  
  

 The objective of studying logic gates is to understand the 

fundamental building blocks of digital systems. Logic gates are the 

foundation of digital electronics. 

  

1 / C –Central Idea :-  
  

1- Understand Binary Logic. 

2- Understand Logic Gates(AND, OR, NOT, NAND, NOR,    XOR, 

and XNOR). 

  

1 / Overview 

  



 

3- Different inputs Logic Circuit. 

4- Interpret and Create Truth Tables. 

5- Translate logical expressions into truth tables and vice versa  

 

1 / D – Performance Objectives  
 

After studying this unit, the student will be able to:-  

1- Know the types of logic gates   

 

2-   Build simple and complex logic circuits 

3- Represent logic circuits in Boolean algebra . 

  

 
  

What is the relation between the logic gates 

and electronics circuits? 
 

 

 

 

 

2 /  Pretest 
 : 

    

  

       



 

 

 
A 'Logic Gate' is a type of simple digital circuit that takes 

binary inputs and produces binary output. It is used in digital 

systems to perform operations on binary variables. 

 

 Logic gates are simple digital circuits that take one or more binary 

inputs and produce a binary output. Logic gates are drawn with a 

symbol showing the input (or inputs) and the output. Inputs are 

usually drawn on the left (or top) and outputs on the right (or 

bottom). Digital designers typically use letters near the beginning of 

the alphabet for gate inputs and the letter Y for the gate output. The 

relationship between the inputs and the output can be described with 

a truth table or a Boolean equation. A truth table lists inputs on the 

left and the corresponding output on the right. It has one row for 

each possible combination of input. A Boolean equation is a 

mathematical expression using binary variables. 

  
 

 

3 /  Logic gates 
  : - 

    

https://www.sciencedirect.com/topics/engineering/binary-input
https://www.sciencedirect.com/topics/engineering/binary-input
https://www.sciencedirect.com/topics/computer-science/boolean-equation


 

1.NOT Gate 

 

A NOT gate has one input, A, and one output, Y, as shown 

in Figure bellow. The NOT gate’s output is the inverse of its input. 

If A is FALSE, then Y is TRUE. If A is TRUE, then Y is FALSE. 

This relationship is summarized by the truth table and Boolean 

equation in the figure. The line over A in the Boolean equation is 

pronounced NOT, so Y=A¯ is read “Y equals NOT A.” The NOT 

gate is also called an inverter. 

 

 2. AND Gate 

 

Two-input logic gates are more interesting. The AND 

gate shown in Figure below produces a TRUE output, Y, if and 

only if both A and B are TRUE. Otherwise, the output is 

FALSE. The Boolean equation for an AND gate can be written in 

several ways: Y = A • B, Y = AB,  read “Y equals A and B. 

 

 

 

 



 

 

3. OR Gate 

 

The OR gate shown in Figure below produces a TRUE 

output, Y, if either A or B (or both) are TRUE. The Boolean 

equation for an OR gate is written as Y = A + B . Digital designers 

normally use the + notation, Y = A + B is pronounced 

“Y equals A or B.” 

 

 
 

 

4. NAND Gate 

 

Any gate can be followed by a bubble to invert its operation. 

The NAND gate performs NOT AND. Its output is TRUE unless 

both inputs are TRUE as shown in figure bellow: 

 

 
 



 

5.NOR Gate 

 

The NOR gate performs NOT OR. Its output is TRUE if 

neither A nor B is TRUE as shown in figure below: 

 

 
 

6.EX-OR Gate  

 

XOR (exclusive OR, pronounced “ex-OR”) is TRUE 

if A or B, but not both, are TRUE. The XOR operation is indicated 

by ⊕, a plus sign with a circle around it.  

 
 

 

 

An N-input XOR gate is sometimes called a parity gate and 

produces a TRUE output if an odd number of inputs are TRUE. 



 

As with two-input gates, the input combinations in the truth table 

are listed in counting order 

 

7.XNOR Gate 
 

Figure below shows the symbol and Boolean equation for a 

two-input XNOR (pronounced ex-NOR) gate that performs the 

inverse of an XOR. 

The XNOR output is TRUE if both inputs are FALSE or both 

inputs are TRUE. The two-input XNOR gate is sometimes called 

an equality gate because its output is TRUE when the inputs are 

equal. 

 

 

 
 

 

Summery : 

• AND gate: the output is 1 if all inputs are 1; otherwise, the 

output is 0. 

• OR gate: the output is 1 if at least one input is 1; otherwise, 

the output is 0. 

• XOR gate: the output is 0 if both inputs are same; otherwise, 

the output is 1. 

• NAND gate: the output is 1 if at lease one input is 0; 



 

otherwise, the output is 0. 

• NOR gate: the output is 1 if both inputs are 0; otherwise, the 

output is 0. 

• NOT gate or inverter: the output is 1 if the input is 0 and the 

output is 0 if the input is 1. 

Logic gate symbols 

  

    Table 2 is a summary truth table of the input/output 

combinations for the NOT gate together with all possible 

input/output combinations for the other gate functions. Also note 

that a truth table with 'n' inputs has 2n rows. You can compare the 

outputs of different gates.  

  Logic gates representation using the Truth table  

  

 
  

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth


 

Multiple-Input Gates 

Many Boolean functions of three or more inputs exist. The 

most common are AND, OR, XOR, NAND, NOR, and XNOR. 

An N-input AND gate produces a TRUE output when all N inputs 

are TRUE. An N-input OR gate produces a TRUE output when at 

least one input is TRUE. 

 

Truth tables :-  

  
   Many logic circuits have more than one input and one or more 

outputs. A truth table shows how the logic circuit's output responds 

to the various combinations of logic states at the inputs. The formal 

for two, three, and four input with one output truth tables are shown 

below :    

 

No.of 

State in 

Decimal 

Inputs Output 

A B F 

0 0 0  

1 0 1  

2 1 0  

3 1 1  

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/computer-science/boolean-function


 

If the number of inputs more than 2 ,  

 

The number of states in the truth table = 2 ^ number of inputs  

 

For example If the number of inputs = 3  ,  

The number of states in the truth table = 2 ^ 3 = 2*2*2= 8 and the 

truth table as shown below : 

 

No. of 

states in 

decimal 

Inputs Output 

A B C X 

0 0 0 0  

1 0 0 1  

2 0 1 0  

3 0 1 1  

4 1 0 0  

5 1 0 1  

6 1 1 0  

7 1 1 1  

 

 

 



 

For example If the number of inputs = 4 ,  

The number of states in the truth table = 2 ^ 4 = 2*2*2*2= 16 and 

the truth table as shown below : 

No. of 

states in 

decimal 

Inputs Output 

A B C D X 

0 0 0 0 0  

1 0 0 0 1  

2 0 0 1 0  

3 0 0 1 1  

4 0 1 0 0  

5 0 1 0 1  

6 0 1 1 0  

7 0 1 1 1  

8 1 0 0 0  

9 1 0 0 1  

10 1 0 1 0  

11 1 0 1 1  

12 1 1 0 0  

13 1 1 0 1  

14 1 1 1 0  

15 1 1 1 1  

 



 

Example  

Example : Four-Input And Gate The figure below shows the 

symbol and Boolean equation for a four-input AND gate. Create a 

truth table. 

Solution 

Figure bellow shows the truth table. The output is TRUE only if all 

of the inputs are TRUE. 

 

            

 

 

 

 

 

 



 

 

Example  

Three-Input NOR Gate 

 

                                                     
 

 

 

 

 

 

 

 

 



 

Describing logic circuits algebraically  

  

    Any logic circuit, no matter how complex, may be completely 

described using the Boolean operations previously defined.  

  

Example:-  

 Determine the output expression for the logic indicated below: -  

  

  

                                  X=A.B+C                                        X=(A+B).C  

                   

 

  

  

  

       

                                                                                      

  

  

Implementing circuits from Boolean expressions :-  

  

    If the operation of a circuit is defined by a Boolean expression, a 

logic circuit can be implemented directly from that expression.  

  

Example :  

   Implement the logic circuits defined by the following Boolean 

expressions :  

a)   

b)  

  

 

  

A 

B 
A 

B C C 

A 

B 

A 

  



 

Solution :-  

  a)   

  
  

  

b)   

             

  
 

 

 

 

 

 

 

 

 

 



 

Canonical and Standard Form 

 

Canonical Form – In Boolean algebra, the Boolean function 

can be expressed as Canonical Disjunctive Normal Form known 

as minterm and some are expressed as Canonical Conjunctive 

Normal Form known as maxterm. 

  

• In Minterm, we look for the functions where the output results in “1” 

• In Maxterm we look for functions where the output results in “0”.  

• We perform the Sum of minterm also known as the Sum of 

products(SOP).  

• We perform Product of Maxterm also known as Product of 

sum(POS).  

Boolean functions expressed as a sum of minterms or product of 

maxterms are said to be in canonical form.  

 

A Boolean function can be expressed algebraically from a given 

truth table by forming a :  

• Minterm for each combination of the variables that produces 

a 1 in the function and then takes the OR of all those terms. 

• Maxterm for each combination of the variables that produces 

a 0 in the function and then takes the AND of all those terms. 

 

 

https://www.geeksforgeeks.org/representation-of-boolean-functions/


 

1.POS Truth Table 
 

The Sum-of-Products (SOP) Form (Minterm) This form is 

sometimes called "minterm". A product term that contains 

each of the n-variables factors in either complemented or 

uncomplemented form for output digits "1" only, is called SOP.  

Consider a function X, whose truth table is as follows: 

No. of 

states in 

decimal 

Inputs Output (Minterm) 

A B C X 

0 0 0 0 1 𝐴 ̅�̅�𝐶 ̅     

1 0 0 1 0  

2 0 1 0 1 𝐴 ̅𝐵�̅� 

3 0 1 1 1 �̅�𝐵𝐶 

4 1 0 0 0  

5 1 0 1 0  

6 1 1 0 1 𝐴 ̅�̅�𝐶 

7 1 1 1 1 ABC 

 

The Logical SOP expression for the output digit "1" is written as" 

𝐹 = �̅��̅��̅�+ �̅�𝐵�̅�+ �̅�𝐵𝐶 + 𝐴𝐵�̅�+ 𝐴𝐵𝐶 

This function com be put in another form such as:  

𝐹 = ∑0, 2,3,6,7 

Since F= 1 in rows 0, 2,3,6,7 only.  

The second form is called the Canonical Sum of Products 

(Canonical SOP). 



 

POS Truth Table 

 

A Logical equation can also be expressed as a product of sum 

(POS) form (sometimes this method is called "Maxterm". This is 

done by considering the combination for F=0 (output = 0). 

 

Consider a function X, whose truth table is as follows:  

 

No. of 

states in 

decimal 

Inputs Output (Maxterm) 

A B C X 

0 0 0 0 1    

1 0 0 1 0 (𝐴 + 𝐵 + 𝐶 ̅) 

2 0 1 0 1  

3 0 1 1 1  

4 1 0 0 0 (𝐴 ̅+ 𝐵+ 𝐶) 

5 1 0 1 0 (𝐴 ̅+ 𝐵+ 𝐶 ̅) 

6 1 1 0 1  

7 1 1 1 1  

 

 
 

The function X can be written in POS form by multiplying all the 

max-terms when X is LOW(0).  



 

While writing POS, the following convention is to be followed:  

 

So for the above example from the truth table F=0 is in rows 1, 4, 5 

hence: 

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + �̅�) ∙ (�̅�+ 𝐵 + 𝐶) ∙ (�̅�+ 𝐵+ �̅�) 

 

This is POS form. POS form can be expressed as:  

𝐹 = ∏(1, 4, 5) 

 

This form is called the Canonical Product of Sum (Canonical POS). 

 

What is the symbol for SOP and POS? 

 

SOP and POS are two forms of Boolean expression where SOP is 

denoted with the sign summation ∑ and POS is denoted by pi 

notation Π. 

 

Example of SOP form = AB + BC + CA 

Example of POS form = (A + B)(B + C)(C + A) 
 

 

 

 

 

 

 

 

 

 

 

 



 

Converting an SOP Expression into a Truth Table 

 

 

Consider the following sum of product expression: 
 

 
 

Sum of Product Truth Table Form 

 

 
 

 

 

 

 

 

 

 



 

Example :The following Boolean Algebra expression is given as: 

 
1. Use a truth table to show all the possible combinations of input 

conditions that will produces an output. 

2.  Draw a logic gate diagram for the expression. 

  

Solution : 

1.Sum of Product Truth Table Form 
 

 
 

 

 

 

 

 

 

 



 

2. Logic Gate SOP Diagram 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Converting an POS Expression into a Truth Table 

 

Consider the following product of sum expression: 

 

 
We can now draw up the truth table for the above expression to 

show a list of all the possible input combinations 

for A, B and C which will result in an output “0”. 

 

Product of Sum Truth Table Form 

 
 

Example: The following Boolean Algebra expression is given as: 

 

 
 



 

1. Use a truth table to show all the possible combinations of input 

conditions that will produces a “0” output. 

2. Draw a logic gate diagram for the POS expression. 

 

Solution : 

1.Product of Sum Truth Table Form 

 
 

2. Logic Gate Diagram 

 



 

Examples: Construct a Truth Table for the logical functions at 

points C, D and Q in the following circuit and identify a single logic 

gate that can be used to replace the whole circuit. 

 

 

 
From the truth table above, column C represents the output function 

generated by the NAND gate, while column D represents the output 

function from the Ex-OR gate. Both of these two output expressions 

then become the input condition for the Ex-NOR gate at the output. 

 

It can be seen from the truth table that an output at Q is present when 

any of the two inputs A or B are at logic 1. The only truth table that 

satisfies this condition is that of an OR Gate. Therefore, the whole 

of the above circuit can be replaced by just one single 2-

input OR Gate. 



 

Examples : Find the Boolean algebra expression for the following 

system. 

 

 
The system consists of an AND Gate, a NOR Gate and finally 

an OR Gate. The expression for the AND gate is A.B, and the 

expression for the NOR gate is A+B. Both these expressions are 

also separate inputs to the OR gate which is defined as A+B. Thus 

the final output expression is given as: 

 
 

 
 

Then, the whole circuit above can be replaced by just one 

single Exclusive-NOR Gate and indeed an Exclusive-NOR Gate is 

made up of these individual gate functions. 



 

 

Example : Find the Boolean algebra expression for the following 

system. 

 

 

 
 

 

 

This system may look more complicated than the other two to 

analyses but again, the logic circuit just consists of 

simple AND, OR and NOT gates connected together. 

 

 

 

 
 



 

 
 

 

 

  
1. Draw the circuit diagrams to show how a NOR gate can be 

made into a NOT gate.  

 

4 / P ost 
  test : - 

    

  

  

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#norgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#norgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#notgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#notgate


 

  
  

  

  

  
 

 

 

 

 

 

 

1.Convert the following logic gate circuit into a Boolean expression, 

writing Boolean sub-expressions next to each gate output in the 

diagram: 

 
 

 

 

 

 key answer 
  : - 

  

  

  

1 -   post   test   : -   

  

     5/ HomeWorks: - 



 

2.Convert the following logic gate circuit into a Boolean expression, 

writing Boolean sub-expressions next to each gate output in the 

diagram: 

 
3.An engineer hands you a piece of paper with the following Boolean 

expression on it, and tells you to build a gate circuit to perform that 

function: 

 
Draw a logic gate circuit for this function. 

 

 

4.determine the output expression for the following circuit  

determine the output logic level if A=1, B=1 and C=0, D=0 

5.  Design a logic circuit to verify the following functions 

• 𝐹 = ∑(0,1,2,4,6,9,11) 

• 𝐹 = 𝜫 ∑(0,1,2,5,6) 

A.  Draw the circuit for the function shown below : 

𝐹 = (�̅� + 𝐵). (�̅� + 𝐶) 

𝑄 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ ) +  (𝑍. 𝑊̅̅ ̅̅ ̅̅  



 

Ministry of high Education and Scientific Research 

Southern Technical University 
Technological institute of Basra 

Department of Computer Networks and Software Techniques 

 

 
  

  

 

 

  

                         Learning package  

                                                                In  

 

Boolean Algebra 
For  

  
   Students of First Year  

  

 
  

 

By 

                              Ethar Abduljabbar Hadi 

Assistant Lecturer 

Dep. Of Computer Networks and Software Techniques 
2025  



 

 

  

1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Technologies 

  
  

1 / B –Rationale :-  
  

 Boolean algebra, in the context of logic, provides a powerful 

framework for analyzing and simplifying logical statements and 

arguments. It allows us to represent logical relationships using 

algebraic techniques, making it easier to determine the validity of 

inferences and the structure of logical systems. This is crucial in 

fields like digital circuit design, computer programming, and 

philosophical logic.  

  

 

  

1 / Overview 

  



 

2 / C –Central Idea :-  
  

1. Understand Boolean Algebra rules. 

2. Simplify Logical Expressions. 

1 / D – Performance Objectives  
 

After studying this unit, the student will be able to:-  

1. Know the Boolean Algebra rules. 

2. know how to Simplify Logical Expressions. 

 

 

  

 
  

What is the advantage of minimizing the 

Logic  circuits? 
 

 

 

 

 

2 /  Pretest 
 : 

    

  

       



 

 
 

 

Boolean Algebra is a branch of algebra that deals with boolean 

values—true and false. It is fundamental to digital logic design and 

computer science, providing a mathematical framework for 

describing logical operations and expressions 

 

 

 

Boolean Algebra Operations 

 

 

Various operations are used in Boolean algebra but the basic 

operations that form the base of Boolean Algebra are. 

 

 
 

 

 

 

 

 

3 /  Boolean Algebra 
      



 

 

Laws for Boolean Algebra 
 

 

The basic laws of the Boolean Algebra are added in the table added 

below, 

 
 

 

 

 

 

 

 

 

 

 

 

NO. Law OR form AND form 

1. Identity Law A + 0 = A A.1 = A 

2. Idempotent Law A + A = A A.A = A 

3. Commutative Law A + B = B + A A.B = B.A 

4. 
Associative Law 

A+ (B + C) = (A + B) 

+ C 
A.(B.C) = (A.B).C 

5. 
Distributive Law 

A + BC = (A + B).(A 

+ C) 

A.(B + C) = A.B + 

A.C 

6. Inversion Law (A’)’ = A (A’)’ = A 

7. 
De Morgan’s Law (A + B)’ = (A)’.(B)’ 

(A.B)’ = (A)’ + 

(B)’ 



 

1. Boolean Algebraic Identities 

 

In mathematics, an identity is a statement true for all possible 

values of its variable or variables. 

 

The algebraic identity of x + 0 = x tells us that anything (x) added 

to zero equals the original “anything,” no matter what value that 

“anything” (x) may be. 

 

Like ordinary algebra, Boolean algebra has its own unique 

identities based on the bivalent states of Boolean variables. 

 

1.1 Additive Identities 

 

1.1.1 Adding Zero 

 

The first Boolean identity is that the sum of anything and zero is 

the same as the original “anything.” 

This identity is no different from its real-number algebraic 

equivalent: 

 

A+0=A 

           
 

No matter what the value of A, the output will always be the same: 

when A=1, the output will also be 1; when A=0, the output will 

also be 0. 

 

 

 

 

 

https://www.allaboutcircuits.com/technical-articles/boolean-identities/


 

1.1.2 Adding One 

 

The next identity is most definitely different from any seen in 

normal algebra. 

Here we discover that the sum of “anything” and one is one: 

 

A+1=1 

 

 
 

 No matter what the value of A, the sum of A and 1 will always be 

1. In a sense, the “1” signal overrides the effect of A on the logic 

circuit, leaving the output fixed at a logic level of 1. 

 

1.1.3 Adding a Quantity to Itself 

 

Next, we examine the effect of adding A and A together, which is 

the same as connecting both inputs of an OR gate to each other 

and activating them with the same signal: 

 

A+A=A 

 

 
 

Thus, when we add a Boolean quantity to itself, the sum is equal to 

the original quantity: 0 + 0 = 0, and 1 + 1 = 1 

 

 

 

 

 



 

1.1.4 Adding a Quantity to Its Complement 

 

Introducing the uniquely Boolean concept of complementation into 

an additive identity, we find an interesting effect. 

Since there must be one “1” value between any variable and its 

complement, and since the sum of any Boolean quantity and 1 is 1, 

the sum of a variable and its complement must be 1: 

 

A+A’=1 

 

 
 

 

1.2  Multiplicative Identities 

 

Just as there are four Boolean additive identities (A+0, A+1, A+A, 

and A+A’), so there are also four multiplicative identities: Ax0, 

Ax1, AxA, and AxA’. Of these, the first two are no different from 

their equivalent expressions in regular algebra: 

  

1.2.1 Multiplying by 0 or 1 

 

  

                                              0.A=0                      1.A=A         

 
 

 

 

 

  



 

1.2.2 Multiplying a Quantity by Itself 

 

The third multiplicative identity expresses the result of a Boolean 

quantity multiplied by itself. 

since 0 x 0 = 0 and 1 x 1 = 1: 

 

A.A=A 

 
 

1.2.3 Multiplying a Quantity by Its Complement 

 

The fourth multiplicative identity has no equivalent in regular 

algebra because it uses the complement of a variable, a concept 

unique to Boolean mathematics. 

Since there must be one “0” value between any variable and 

its complement, and since the product of any Boolean quantity 

and 0 is 0, the product of a variable and its complement must be 0: 

 

 A.A’=A 

 

 
  

 

 



 

To summarize, then, we have four basic Boolean identities for 

addition and four for multiplication: 

 

 
 

 

2. Commutative Law 

Binary variables in Boolean Algebra follow the commutative 

law. This law states that operating boolean variables A and B is 

similar to operating boolean variables B and A. That is, 

 

• A. B = B. A 

 
• A + B = B + A 

 
 

 



 

 

3.Associative Law 

 

Associative law state that the order of performing Boolean 

operator is illogical as their result is always the same. This can be 

understood as, 

 

• ( A . B ) . C = A . ( B . C ) 

 

 
 

 

• ( A + B ) + C = A + ( B + C) 

•  

 
 

 

 

 

 

 

 

 

 

 



 

4. Distributive Law 

 

Boolean Variables also follow the distributive law and the 

expression for Distributive law is given as: 

• A . ( B + C) = (A . B) + (A . C) 

 

 
 

 

PROOF: Distributivity of AND over OR 

 

NO. 

Of 

state 

inputs LHS RHS 

A B C (B+C) A⋅(B+C) (A.B) (A.C) (A⋅B)+(A⋅C) 

0 0 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 0 0 

2 0 1 0 1 0 0 0 0 

3 0 1 1 1 0 0 0 0 

4 1 0 0 0 0 0 0 0 

5 1 0 1 1 1 0 1 1 

6 1 1 0 1 1 1 0 1 

7 1 1 1 1 1 1 1 1 

 

 

 

 

 

 



 

 

 

 

• A + ( B . C) = (A + B) . (A + C) 

 

 
 

PROOF: Distributivity of OR over AND 

 

 

NO. 

Of 

state 

inputs LHS RHS 

A B C (B.C) A+(B.C) (A+B) (A+C) 

(A + B) 

. (A + 

C) 

 

0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 1 0 

2 0 1 0 0 0 1 0 0 

3 0 1 1 1 1 1 1 1 

4 1 0 0 0 1 1 1 1 

5 1 0 1 0 1 1 1 1 

6 1 1 0 0 1 1 1 1 

7 1 1 1 1 1 1 1 1 

 

 

 

 

 

 

 



 

 5.Double Complement 

Another identity that has to do with complementation is that 

of the double complement: a variable inverted twice. 

Complementing a variable twice (or any even number of 

times) results in the original Boolean value. 

This is analogous to negating (multiplying by -1) in real-

number algebra: an even number of negations cancel to leave the 

original value: 

 

 
 

 

Absorption Law 

 

One of the more useful Boolean identities is absorption 

because it allows users to remove unneeded variables. However, in 

addition, it also allows us to introduce variables that then frequently 

allow us to make even greater simplifications  

  

 

 



 

 

 can just distribute the OR over the AND. Let's use the first approach 

as this is the one that is usually easier to see in practice. 

 

A+(A⋅B)=(A+A).(A+B)          

             = A(A+B)                  

            =AA+AB 

           = A+AB                         

           =A(1+B) 

           =A 
 

 

NO. 

Of 

State 

inputs LHS RHS 

A B (A.B) A+(A.B) A 

0 0 0 0 0 0 

1 0 1 0 0 0 

2 1 0 0 1 1 

3 1 1 1 1 1 
 

  

 

  

 

A⋅(A+B)=(AA)+(A.B) 

             =A+AB 

            =A(1+B) 

           =A 

 

  



 

 

NO. 

Of 

state 

inputs LHS RHS 

A B (A+B) A.(A+B) A 

0 0 0 0 0 0 

1 0 1 1 0 0 

2 1 0 1 1 1 

3 1 1 1 1 1 

 

 

 

Two very important rules of simplification in Boolean algebra are 

as follows: 

 

 

  

  

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

Boolean Algebra Theorems 

There are two basic theorems of great importance in Boolean 

Algebra, which are De Morgan’s First Laws, and De Morgan’s 

Second Laws. These are also called De Morgan’s Theorems. Now 

let’s learn about both in detail. 

 

1.De Morgan’s First laws 

De Morgan’s Law states that the complement of the product 

(AND) of two Boolean variables (or expressions) is equal to the 

sum (OR) of the complement of each Boolean variable (or 

expression). 
 

(A.B)’     =     (A)’ + (B)’ 
  

 

The truth table for the same is given below: 

A B  (A)’  (B)’ (A.B)’ (A)’ + (B)’  

0 0 1 1 1 1 

0 1 1 0 1 1 

1 0 0 1 1 1 

1 1 0 0 0 0 

 



 

 

2. De Morgan’s Second laws 

 

Statement: The Complement of the sum (OR) of two Boolean 

variables (or expressions) is equal to the product(AND) of the 

complement of each Boolean variable (or expression). 

 

(A + B)’ = (A)’.(B)’ 

 

 
Proof: 

The truth table for the same is given below: 

 

A B  (A)’  (B)’ (A+B)’ (A)’.(B)’  

0 0 1 1 1 1 

0 1 1 0 0 0 

1 0 0 1 0 0 

1 1 0 0 0 0 

 

We can clearly see that truth values for (A + B)’ are equal to 

truth values for (A)’.(B)’, corresponding to the same input. Thus, 

De Morgan’s Second Law is true 



 

 

Advantages, Disadvantages of Boolean Algebra : 

 

Advantages 

• Simplifies the design and analysis of digital circuits. 

• Reduces the complexity of logical expressions and functions. 

• Enhances efficiency in digital logic design and computer 

programming. 

Disadvantages 

• Limited to binary values, which may not always represent 

real-world complexities. 

• Requires a strong understanding of logical operators and 

rules. 

 
 

 

  
Proof  the first and second laws of De Morgan’s . 

  
  

4 / P ost 
  test : - 

    

  

  

 key answer 
  : - 

  

  

  

1 -   post   test   : -   



 

  

 

 

 

 

 

 

 

1. Simplify the following expression using Boolean algebra, 

then design a logic circuit to verify it. 

 

𝐹 = (�̅� + �̅�)(𝑋 + 𝑌) + (�̅� + 𝑌)(𝑋 + �̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 

 

2. Simplify the following expression using Boolean algebra, 

then design a logic circuit to verify it.  

𝐹 = (𝐴�̅� + 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (�̅� + �̅�𝐶̅̅̅ ̅̅ ) 

 

 

3. design the logic circuit with following requirements: 

 

F=1      , If the inputs less than 5 

                           F=0     , Otherwise 

A. Write the truth table . 

B. Write the SOP function. 

C. Simplify F . 

D. Draw the circuit in step 3.                    

 

 

 

 

  

     
5/ HomeWorks: - 
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1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Technologies 

  
  

1 / B –Rationale :-  
  

 Karnaugh Maps (K-maps), in the context of logic, provides a 

powerful framework for analyzing and simplifying logical 

statements and arguments. It allows us to represent logical 

relationships using algebraic techniques, making it easier to 

determine the validity of inferences and the structure of logical 

systems. This is crucial in fields like digital circuit design, computer 

programming, and philosophical logic.  

We study Karnaugh Maps (K-maps) in logic design because they 

help us simplify Boolean expressions, which is essential in 

designing efficient digital circuits.  

  

1 / Overview 

  



 

  

 

3 / C –Central Idea :-  
 

1.Understand Karnaugh Maps (K-maps) rules. 

2.Simplify Logical Expressions by using Karnaugh Maps (K-

maps)  . 

3.Design of Efficient Digital Circuits 

1 / D – Performance Objectives  
 

After studying this unit, the student will be able to:-  

1. Know the Karnaugh Maps (K-maps rules. 

2. know how to Simplify Logical Expressions. 

3. K-maps make it easier to minimize Boolean functions without 

needing long algebraic manipulations. 

4. Simplified expressions use fewer logic gates, saving space and 

power. 

 

 

 

  



 

 

 

1.Why we need another simplification method (k-map) ? 

2. What is the difference between K-maps  and Boolean Algebra 

to  minimize Boolean functions ? 

 
 

 

 

 

 

 
 

In many digital circuits and practical problems, we need to 

find expressions with minimum variables. We can minimize 

Boolean expressions of 3, 4 variables very easily using K-map 

without using any Boolean algebra theorems. 

 

2 /  Pretest 
 : 

    

  

       

3 /  K-Map (Karnaugh Map) 
      



 

Steps to Solve Expression using K-map 

1. Select the K-map according to the number of variables. 

2. Identify minterms or maxterms as given in the problem. 

3. For SOP put 1’s in blocks of K-map respective to the 

minterms (0’s elsewhere). 

4. For POS put 0’s in blocks of K-map respective to the max 

terms (1’s elsewhere). 

5. Make rectangular groups containing total terms in power of 

two like 2,4,8 ..(except 1) and try to cover as many elements 

as you can in one group. 

6. From the groups made in step 5 find the product terms and 

sum them up for SOP form. 

 

2 Variable Truth Table and K-Map 
 

A logical specification is often created using a truth table. 

A truth table is a list of the inputs (A, B) on the left and the 

corresponding output (F) on the right. See Figure 1 showing a 2 

variable truth table and corresponding K-Map. 

 

 

Each cell of the K-Map represents an input state (A, B). The 

value of each cell represents the output function (F). In order to find 



 

the minimum logic function, it is necessary to identify matching 

adjacent cells. Once these matches are found, an expression can be 

written.  

 

 

 

3 Variable Truth Table and K-Map 
 

Below is an example of a 3 variable K-Map. Notice that the cells are ordered in the K-Map 

to ensure only one bit changes on any adjacent cell. From left to right 

instead of 0, 1, 2, 3, 4, 5 ,6, 7, the cell ordering is 0, 1, 2, 3, 6, 7, 4, 

5. 

 

000 010 110 100 

001 011 111 101 

 
 



 

 

 
 

4 Variable Truth Table and K-Map 
 

Below is an example of a 4 variable K-Map. Notice that the 

cells are ordered in the K-Map to ensure only one bit changes on 

any adjacent cell.  

   4-Variables K-map 

  

 

 

 

 

 



 

Examples : 

 
 

 

  
   For the following function : - 

Q = ∏M(5,7,13,15) 

1. Write the truth table for the function above. 

2. By using K-map , Simplify Q 

Design the circuit to implement the function in step 2.         

4 / P ost 
  test : - 

    

  

  



 

                                            

 

 

 

 

 

 

 
 

1. Four chairs A,B,C,D are placed in a circle. Each chair may be occupied 

(“1”) or empty (“0”) .A Boolean function F is “1” if and only if there are 

two or more adjacent chairs that are empty .  

a. Give the truth table defining the Boolean function F. 

b. Simplify the function F  and draw the logic circuit . 

 

2. Design a digital system whose output is defined as logically low if the 4-

bit input binary number is a multiple of 3; otherwise, the output will be 

logically high. The output is defined if and only if the input binary number 

is greater than 2.  

 

In the given example: 

• The number of input variables = 4, which we will call A, B, C, and D. 

• The number of output variables = 1, which we will call Y. 

Where: 

• Y = "Don't Care," if the input number is less than 3 (orange entries in 

the truth table) 

• Y = 0, if the input number is an integral multiple of 3 (green entries in 

the truth table) 

• Y = 1, if the input number is not an integral multiple of 3 (blue entries 

in the truth table) 

 

 

 

 

 

 

  

     5/ HomeWorks: - 
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1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Technologies 

  
  

1 / B –Rationale :-  
  

The idea of studying combinational logic circuits is rooted in 

the goal of understanding and designing circuits that produce 

outputs based solely on current inputs — with no memory or 

feedback involved. These circuits form the foundation of digital 

systems, such as computers, calculators, and embedded systems.. 

This is crucial in fields like digital circuit design, computer 

programming, and philosophical logic.  

 

 

 

  

1 / Overview 

  



 

1 / C –Central Idea :-  
 

1.Understand the Foundation of Digital Electronics. 

2. learning how to design combinational logic Circuits 

3.Design Digital Circuits like Adder, subtracter. 

1 / D – Performance Objectives  
 

After studying this unit, the student will be able to:-  

 Understand Foundation of Digital Electronics where , 

Combinational logic is the building block for all digital systems. 

It includes essential components like adders, multiplexers, 

decoders, encoders, and comparators 

 

 

 

 

What do you know about Combinational Logic Circuits? 
 

 
 

 

2 /  Pretest 
 : 

    

  

       



 

 

 

 

 
 

Combinational Logic Circuits are memoryless digital logic 

circuits whose output at any instant in time depends only on the 

combination of its inputs. 

 

Unlike Sequential Logic Circuits whose outputs are dependant 

on both their present inputs and their previous output state giving 

them some form of Memory. The outputs of Combinational Logic 

Circuits are only determined by the logical function of their current 

input state, logic “0” or logic “1”, at any given instant in time. 

 

The result is that combinational logic circuits have no 

feedback, and any changes to the signals being applied to their 

inputs will immediately have an effect at the output. In other words, 

in a Combinational Logic Circuit, the output is dependant at all 

times on the combination of its inputs. Thus a combinational circuit 

is memoryless. 

3 /  Combinational Logic Circuits 
      



 

 

So if one of its inputs condition changes state, from 0-1 or 1-

0, so too will the resulting output as by default combinational logic 

circuits have “no memory”, “timing” or “feedback loops” within 

their design. 

 

Combinational Logic 

 

 
 

 

Common combinational circuits made up from individual logic 

gates that carry out a desired application include Multiplexers, De-

multiplexers, Encoders, Decoders, Full and Half Adders etc. 

                   

Classification of Combinational Logic 

 

 

 

 

                    

 

 



 

Binary Adders  
 

A common and very useful combinational logic circuit which 

can be constructed using just a few basic logic gates allowing it to 

add together two or more binary numbers is the Binary Adder. 

 

   123 A (Augend) 

+ 789    B    (Addend) 

912 SUM   

   

 

Binary Adders are arithmetic circuits in the form of half-

adders and full-adders used to add together two binary digits. 

 

1.Half Adder Circuit 

 
A half adder is a logical circuit that performs an addition 

operation on two binary digits. The half adder produces a sum and 

a carry value which are both binary digits. 

 

 

 



 

Logic circuit Truth Table 

 

A B SUM CARRY 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

For the SUM bit: 

SUM = A XOR B = A ⊕ B 

For the CARRY bit: 

CARRY = A AND B = A.B 

 

 

From the truth table of the half adder we can see that the SUM 

(S) output is the result of the Exclusive-OR gate and the Carry-out 

(Cout) is the result of the AND gate. Then the Boolean expression 

for a half adder is as above. 

 
 

 



 

2.Full Adder Circuit 
 

The main difference between the Full Adder and the 

previous Half Adder is that a full adder has three inputs. The same 

two single bit data inputs A and B as before plus an 

additional Carry-in (C-in) input to receive the carry from a previous 

stage as shown below. 

 

Full Adder Block Diagram 

 

 

 
 

 

 

 

Then the full adder is a logical circuit that performs an 

addition operation on three binary digits and just like the half adder, 

it also generates a carry out to the next addition column. Then 

a Carry-in is a possible carry from a less significant digit, while 

a Carry-out represents a carry to a more significant digit. 

 

 

 

 



 

Full Adder Truth Table with Carry 

Logic circuit Truth Table 

 

A B 
C-

in 
Sum 

C-

out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Then the Boolean expression for a full adder is as follows. 

 

For the SUM (S) bit: 

SUM = (A XOR B) XOR Cin = (A ⊕ B) ⊕ Cin 

 

 

For the CARRY-OUT (Cout) bit: 

CARRY 

OUT = A AND B OR Cin(A XOR B) = A.B + Cin(A ⊕ B) 

 

 

 



 

 

 

(Implementation of Full Adder using Half Adder) 

 

 

 

 
                                    Full Binary Adder Logic Diagram 

 

 

As the full adder circuit above is basically two half adders 

connected together, the truth table for the full adder includes an 

additional column to take into account the Carry-in, CIN input as 

well as the summed output, S and the Carry-out, COUT bit. 

 

 

An n-bit Binary Adder 
 

We have seen above that single 1-bit binary adders can be 

constructed from basic logic gates. But what if we wanted to add 

together two n-bit numbers, then n number of 1-bit full adders need 

to be connected or “cascaded” together to produce what is known as 

a Ripple Carry Adder. 



 

 

 

A “ripple carry adder” is simply “n“, 1-bit full adders cascaded 

together with each full adder representing a single weighted column 

in a long binary addition. It is called a ripple carry adder because the 

carry signals produce a “ripple” effect through the binary adder from 

right to left, (LSB to MSB). 

 

For example, suppose we want to “add” together two 4-bit 

numbers, the two outputs of the first full adder will provide the first 

place digit sum (S) of the addition plus a carry-out bit that acts as 

the carry-in digit of the next binary adder. 

 

A 4-bit Ripple Carry Binary Adder 
 

 
 

 

 

 

 

 



 

Binary Subtractor 

 
The Binary Subtractor is another type of combinational 

arithmetic circuit that produces an output which is the subtraction 

of two binary numbers. 

 

As their name implies, a Binary Subtractor is a decision 

making circuit that subtracts two binary numbers from each other, 

for example, X – Y to find the resulting difference between the two 

numbers. the binary subtractor produces a DIFFERENCE, D by 

using a BORROW bit, B from the previous column.  

 

We learnt from our maths lessons at school that the minus sign, 

“–” is used for a subtraction calculation, and when one number is 

subtracted from another, a borrow is required if the subtrahend is 

greater than the minuend. Consider the simple subtraction of the two 

denary (base 10) numbers below. 

 

 
 



 

 

1. Half Subtractor 
 

 

 
 

Symbol Truth Table 

 

X Y DIFFERENCE BORROW 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

From the truth table of the half subtractor we can see that the 

DIFFERENCE (D) output is the result of the Exclusive-OR gate 

and the Borrow-out (Bout) is the result of the NOT-

AND combination. Then the Boolean expression for a half 

subtractor is as follows. 

 

For the DIFFERENCE bit: 

D = X XOR Y = X ⊕ Y 

For the BORROW bit 

B = not-X AND Y = X’.Y 

 
 



 

2.Full Binary Subtractor Circuit 
 

 
Full Binary Subtractor Block Diagram 

 

Full Subtractor Truth Table 

 

Symbol Truth Table 

 

X Y B-in Diff. B-out 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 

Then the Boolean expression for a full subtractor is as follows. 

For the DIFFERENCE (D) bit: 

 
which can be simplified too: 

 
 



 

 

 

 

 

For the BORROW OUT (BOUT) bit: 

 

 

which will also simplify too: 
 

 
 

 

 
 

 

Then the combinational circuit of a “full subtractor” performs 

the operation of subtraction on three binary bits producing outputs 

for the difference D and borrow B-out. Just like the binary adder 

circuit, the full subtractor can also be thought of as two half 

subtractors connected together, with the first half subtractor passing 

its borrow to the second half subtractor as follows. 



 

 
Full Binary Subtractor Logic Diagram 

 

 

Binary Adder-Subtractor 
 

A binary adder-subtractor is a digital circuit that is used to 

perform two basic arithmetic operations namely, binary addition and 

binary subtraction. It is an important component in various digital 

systems like computers, calculators, etc. 

 

The most significant advantage of using a binary adder-

subtractor is that it combines the addition and subtraction operations 

in a single circuit which results in compact size and lower cost. 

 

This Circuit Requires prerequisite knowledge of Xor Gate, 

Binary Addition and Subtraction, and Full Adder.  

 

Let's consider two 4-bit binary numbers A and B as inputs to the 

Digital Circuit for the operation with digits 

https://www.geeksforgeeks.org/xor-gate/


 

 

A0 A1 A2 A3   for    A 

B0 B1 B2 B3    for    B  

 

 

The circuit consists of 4 full adders since we are performing 

operations on 4-bit numbers. There is a control line K that holds a 

binary value of either 0 or 1 which determines that the operation is 

carried out is addition or subtraction.  

 
 

As shown in the figure, the first full adder has a control line 

directly as its input (input carry Cin), The input A0 (The least 

significant bit of A) is directly input in the full adder. The third input 

is the EXOR of B0 and K. The two outputs produced are 

Sum/Difference (S0) and Carry (C0).  

 

 



 

In this circuit, the input K is called the mode input. It controls 

the operation of the circuit as described below: 

 

• When K = 0, the circuit operates as a binary adder. Under 

this mode, we get B⊕0=B. Thus, each full adder receives the 

inputs A and B and performs their addition, i.e., A + B+0. 

• When K = 1, the circuit operates as a binary subtractor. In 

this case, w get B⊕1=1s complement(B) and the input carry 

Cin = 1. Under this mode, the full adders receive B inputs in 

their complemented form and a 1 is added through the input 

carry Cin. Hence, the final output of the circuit is A+ 2s 

complement of Bx which is the subtraction of A and B. 

 

Advantage of Binary Adder and Subtractor 

• Low Design Complexity: Both binary adder and subtractor 

circuits are easy to design using logic gates like XOR, AND, 

and OR. 

• High-Speed Operations: Binary adders such as parallel 

adders-and subtractors can do their operations at a high 

speed. 

• Versatility: It allows the same hardware : to add ,to subtract. 

Saving on redundancy of separate components and designs 

for different functions. 

Disadvantages of Binary Adder and Subtractor 

• Carry Propagation Delay: In a simple ripple carry adder, 

the carry has to ripple through all stages of the adder; this 

increases the computation time as more bits are added. This 

will be more for a larger number of bits in binary. 

• Hardware Complexity: The more the number of bits, the 

more complicated the circuit gets due to more gates. To 

eliminate the problem of delays, higher versions of adders 

such as carry lookahead adders are included which increases 

complexity. 



 

 

 

  
In Adder-Subtractor circuit , can you replace the X0R logic gate by another gate, Why? 

                                            

 

 

 

 

 

 

 
 

By using Adder-Subtractor circuit, implement the operation (9-5) 
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1 / A –Target population :-  
  

For First year students  

Technological institute of Basra 

Dep. Of Computer Networks and Software Technologies 

  
  

1 / B –Rationale :-  
  

The idea of studying sequential logic circuits is to understand 

how digital systems can store, remember, and respond to sequences 

of inputs over time — in other words, how they gain memory and 

timing behavior. This is crucial in fields like digital circuit design, 

computer programming, and philosophical logic.  

 

2 / C –Central Idea :-  
 

1.Understand the Foundation of Digital Electronics. 

2. learning how to design Sequential Logic Circuits.  

  

1 / Overview 

  



 

1 / D – Performance Objectives  
 

After studying this unit, the student will be able to:-  

1. Understand Foundation of Digital Electronics where , 

Sequential logic is the building block for all digital systems. 

Introduce the Concept of Memory 

2. Unlike combinational circuits, sequential circuits remember 

past inputs using storage elements (like flip-flops). 

3. Output depends on both current input and past states. 

Sequential logic circuits allow digital systems to store data and 

operate over time, making them essential for building intelligent, 

interactive, and real-time systems like CPUs, timers, and state 

machines. 

 

 

 

What do you know about Sequential Logic Circuits? 

 

 

 

2 /  Pretest 
 : 

    

  

       



 

 
 

Unlike Combinational Logic circuits that change state 

depending upon the actual signals being applied to their inputs at 

that time, Sequential Logic circuits have some form of inherent 

“Memory” built in. 

 

This means that sequential logic circuits are able to take into 

account their previous input state as well as those actually present, 

a sort of “before” and “after” effect is involved with sequential 

circuits. 

 

In other words, the output state of a “sequential logic circuit” 

is a function of the following three states, the “present input”, the 

“past input” and/or the “past output”. Sequential Logic circuits 

remember these conditions and stay fixed in their current state until 

the next clock signal changes one of the states, giving sequential 

logic circuits “Memory”. 

 

3 /  Sequential Logic Circuits 
      



 

 

 

The word “Sequential” means that things happen in a 

“sequence”, one after another and in Sequential Logic circuits, the 

actual clock signal determines when things will happen next. Simple 

sequential logic circuits can be constructed from 

standard Bistable circuits such as: Flip-

flops, Latches and Counters  

 

Flip Flop in Digital Electronics  

 

 

A flip-flop in digital electronics is a circuit with two stable 

states that can be used to store binary data. The stored data can be 

changed by applying varying inputs. Flip-flops and latches are 

fundamental building blocks of digital electronics systems used in 

computers, communications, and many other types of systems. Both 

are used as data storage elements. 

 



 

The term “Flip-flop” relates to the actual operation of the 

device, as it can be “flipped” into one logic Set state or “flopped” 

back into the opposing logic Reset state. 

 

• Types of Flip-Flop in Electronics and Their Working 

o 1. S-R Flip Flop 

o 2. JK Flip-Flop 

o 3. D Flip-Flop 

o 4. T Flip-Flop 

 

1.The Set-Reset (S-R) Flip-Flop. 

 
An S-R flip-flop has two inputs named Set (S) and Reset (R), 

and two outputs Q and Q'. The outputs are complement of each 

other, i.e., if one of the outputs is 0 then the other should be 1. This 

can be implemented using NAND or NOR gates. The NAND gate 

S-R flip-flop is shown in Figure below:- 

 

 
 

Truth Table for this Set-Reset Function 

https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#flip-flop-types
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#1-sr-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#2-jk-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#3-d-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#4-t-flip-flop


 

 

 

2. JK Flip-Flop 
The JK flip-flop is an improvement on the SR flip-flop where 

S=R=1 is not a problem. 

 

The input condition of J=K=1 gives an output inverting the 

output state. However, the outputs are the same when one tests the 

circuit practically. 



 

In simple words, If J and K data input are different (i.e. high 

and low), then the output Q takes the value of J at the next clock 

edge. If J and K are both low, then no change occurs. 

If J and K are both high at the clock edge, then the output will 

toggle from one state to the other. JK Flip-Flops can function as Set 

or Reset Flip-flops. 

JK Flip-flop Truth Table: 

 

 

 

 

 

 

 

 



 

3. D Flip-Flop 

 
Delay or D flip-flop is a better alternative that is very popular 

with digital electronics. They are commonly used for counters, shift 

registers, and input synchronization. 

 

D Flip-Flop Circuit 

 

In the D flip-flops, the output can only be changed at the clock 

edge, and if the input changes at other times, the output will be 

unaffected. 

 

Truth Table: 

 

 



 

The change of state of the output is dependent on the rising edge of 

the clock. The output (Q) is the same as the input and can only 

change at the rising edge of the clock. 

 

4. T Flip-Flop 
 

A T flip-flop is like a JK flip-flop. These are single-input 

versions of JK flip-flops. This modified form of the JK is obtained 

by connecting inputs J and K together. It has only one input along 

with the clock input. 

 

T Flip Flop Circuit 

 

These flip-flops are called T flip-flops because of their ability to 

complement their state i.e. Toggle, hence they are named Toggle 

flip-flops. 



 

Truth Table: 

 

 

 

Applications: 

 
These are the various types of flip-flops being used in digital 

electronic circuits and the applications of Flip-flops are as specified 

below. 

• Counters 

• Frequency Dividers 

• Shift Registers 

• Storage Registers 

 

https://www.electronicsforu.com/technology-trends/learn-electronics/decade-counter-circuit-basics
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