

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

Logic Design

 For

 First year students

By

 Ethar Abduljabbar Hadi

Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

Course Description

Course Name:
Logic Design
Course Code:

Semester / Year:
First Semester/ First year
Description Preparation Date:
9/5/2025
Available Attendance Forms:
Attendance only
Number of Credit Hours (Total) / Number of Units (Total)
60 hours (theoretical + practical) at a rate of 4 hours per week (2 theoretical + 2 practical)
Course administrator's name (mention all, if more than one name)
Name: Ethar Abduljabbar Hadi
Email: ethar.hadi@stu.edu.iq
Course Objectives

1. Teaching the student the components of the computer
2. Teaching the student the types of numerical systems and how to convert

between them.
3. Teaching the student about logic gates and how to design logical circuits
4. Teaching the student how to simplify logical circuits using the Boolean

 algebra method and the Karnaugh map method.
5. Teaching the student how to design the logical circuits found in the

 calculator in their simple and complex types.
6. Teaching the student how to examine and represent these logical circuits

mailto:ethar.hadi@stu.edu.iq

using special programs for that.
7. Developing Basic Understanding of digital circuits: Enabling students to

understand the fundamental principles of digital circuits, including basic
 electronic components such as adders, digital gates, and comparator.

8. Developing Practical Skills: Providing hands-on training through laboratory
experiments, allowing students to acquire the skills necessary to build and
 test electronic circuits.

9. Enhancing Critical Thinking: Encouraging students to engage in critical and
analytical thinking when solving problems related to electronics.

Teaching and Learning Strategies
1. Cooperative concept planning education strategy.
2. Brainstorming Teaching Strategy.
3. Note-taking Sequence Strategy.

Course Structure

Hours

Required
Learning
Outcomes

Unit or subject name

Learning method

Evaluation
method

1

2

3
4

5
6
7
8
9
10

4hours

4hours

4hours
4hours

4hours
4hours
4hours
4hours
4hours
4hours

1.Understanding
digital logic

circuits Applications

2.Developing

Critical Thinking

 and Problem-
Solving Skills
through Circuit
Analysis and

Fault Detection.

4.Analyzing logic

 Circuits

1- Number Systems

2- Conversion among
Number Systems

3. Binary operations

4. SubtractionUsing
Complement

5. Logic Gates

6. Boolean Algebra

7. De Morgan’s Theorem 8.

8. Standard Forms

9.Karnaugh Map

10.Digital Binary Adders

1.Conducting

laboratory experiments
to build and test

 digital circuits. This
enhances theoretical
understanding

 and develops practical
skills.

2.Seeking feedback

 from instructors and
peers to identify
strengths and
weaknesses.

Daily,

Weekly,
Mid term

Exams, and

 Final Term
Exam.

W
ee

ks

11
12
13
14

4hours
4hours
4hours
4hours

11. Digital Binary
Subtractors

12. Flip-Flops

13. Flip-Flops

14-15. Shift Registers

3.Reviewing concepts
periodically and
applying them

to new problems to
reinforce memory

 and understanding.

4.Using educational
software and

 interactive
applications to better
understand concepts,
such as

 circuit simulations.

5.Encouraging self-
research on new

topics in electronics
and exploring

recent developments.

Course Evaluation
Distributing the score out of 100 as follows:

 20 points for Midterm Theoretical Exams.

 20 points for Midterm Practical Exams.

 10 points for Daily Exams, homework and Assessment.
 50 points for the Final Exam.

Learning and Teaching Resources
Required textbooks (curricular books, if any) Holdsworth, Brian, and Clive Woods. Digital logic

design. Elsevier, 2002.

Main references (sources) Alam, Mansaf, and Bashir Alam. Digital Logic
Design. PHI Learning Pvt. Ltd., 2015.

Recommended books and references (scientific
journals, reports...)

Dally, William James, and R. Curtis Harting. Digital
design: a systems approach. Cambridge University
Press, 2012.

Electronic References, Websites
https://www.geeksforgeeks.org/digital-logic/digital-

electronics-logic-design-tutorials/

 https://www.electronics-tutorials.ws/_1.html
https://www.geeksforgeeks.org/digital-logic/flip-flop-

types-their-conversion-and-applications/#sr-flip-flop

https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/
https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/
https://www.electronics-tutorials.ws/_1.html
https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-applications/#sr-flip-flop
https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-applications/#sr-flip-flop

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

Numbers Systems

For

 Students of First Year

By

 Ethar Abduljabbar Hadi

Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Techniques

1 / B –Rationale :-

Understanding number systems is crucial for gaining

comprehensive knowledge of how data is represented, processed,

and transmitted in digital systems, and enabling students to

efficiently design, configure, troubleshoot, and secure computer

systems and networks., which is why I have created this unit .

1 / C –Central Idea :-
1 – Types of numbers systems

2 – Representation of numbers systems

3 –Conversion numbers systems .

4 – Binary code

5 -The operations on Binary

6- Representation methods.

1 / Overview

1 / D – Performance Objectives
After studying the first unit, the student will be able to:-

1. Know the types of Number systems

2. Representations of numbers systems

3. Convert between the types of numbers of systems

4. Know about Binary code.

5. Understand the operations on Binary.

6. Understand the representation methods.

Why do we need to study the number

system?

2 / Pretest
 :

The numeric system we use daily is the decimal system, but

this system is not convenient for machines since the information is

handled codified in the shape of on or off bits; this way codifying

takes us to the necessity of knowing the positional calculation

which will allow us to express a number in any base where we need

it.

1.Radix number systems

A base of a number system or radix defines the range of values

that a digit may have.

 A-Decimal Number System :-

 This system is composed of 10 numbers or symbols, these 10

symbols are:

 0 1 2 3 4 5 6 7 8 9

 These symbols are called digits.

 The decimal system, also called base 10 system, because it has

10 digits which is a naturally result of the fact that man has 10

fingers.

3 / Numbers Systems
 : -

B- Binary Number System

In the binary system or base 2, there can be only two values

for each digit of a number, either a "0" or "1".

C- Octal Number System

This system is composed of 8 numbers or symbols:

0 1 2 3 4 5 6 7

This is a base -8 system.

For counting after 7

10 ,11,12,13,14,15,16,17,

20,21,22,23,24,25,26,27,

30,31,……………….37,

40,…………………..47,

50,………………….57,

60,61,62,63,64,65,66,67,

70,71,72,73,74,75,76,77,

100,101,102,…………107

110,111,112,…………117.

D- Hexa- Decimal System

This system is composed of 16 numbers or symbols (digit):

0 1 2 3 4 5 6 7 8 9 A B C D E F

Where “A” stands for 10, “B” for 11 and so on.

It is a base – 16 systems

For counting after F

10 ,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,

20,21,22,23,24,25,26,27,28,29,2A,2B,…………..2F,

30,31,………………………..,3A,……………….3F
.
.
90,91,92,……………………..99,9A,9B,……………9F,

A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,AA,AB,,AC,AD,AE,AF,

B0,B1,………………………….B9,BA,………………….BF,

2. Conversion among radices

A. Convert from Decimal to Any Base

 Let's express a decimal number 1341 in binary notation. Note

that the desired base is 2, so we repeatedly divide

 the given decimal number by 2.

Quotient Remainder

1341/2 = 670 1 ----------------------+

670/2 = 335 0 --------------------+ |

335/2 = 167 1 ------------------+ | |

167/2 = 83 1 ----------------+ | | |

83/2 = 41 1 --------------+ | | | |

41/2 = 20 1 ------------+ | | | | |

20/2 = 10 0 ----------+ | | | | | |

10/2 = 5 0 --------+ | | | | | | |

5/2 = 2 1 ------+ | | | | | | | |

2/2 = 1 0 ----+ | | | | | | | | |

1/2 = 0 1 --+ | | | | | | | | | |(Stop when the

 | | | | | | | | | | | quotient is 0)

 1 0 1 0 0 1 1 1 1 0 1 (BIN; Base 2)

Let's express the same decimal number 1341 in octal notation.
Quotient Remainder

1341/8 = 167 5 --------+
167/8 = 20 7 ------+ |

20/8 = 2 4 ----+ | |

2/8 = 0 2 --+ | | | (Stop when the quotient is 0)

 | | | |

 2 4 7 5 (OCT; Base 8)

Let's express the same decimal number 1341 in hexadecimal notation.
Quotient Remainder

1341/16 = 83 13 ------+

83/16 = 5 3 ----+ |

5/16 = 0 5 --+ | |

| | |

5 3 D

(Stop when the quotient is 0)

(HEX; Base 16)

In conclusion, the easiest way to convert fixed point numbers to

any base is to convert each part separately. We begin by separating

the number into its integer and fractional part. The integer part is

converted using the remainder method, by using a successive

division of the number by the base until a zero is obtained. At each

division, the reminder is kept and then the new number in the base

r is obtained by reading the remainder from the last remainder

upwards.

The conversion of the fractional part can be obtained by

successively multiplying the fraction with the base. If we iterate

this process on the remaining fraction, then we will obtain

successive significant digit. These methods form the basis of the

multiplication methods of converting fractions between bases

Example. Convert the decimal number 3315 to hexadecimal

notation. What about the hexadecimal equivalent of

the decimal number 3315.3

Solution:
Quotient Remainder

3315/16 = 207 3 ------+

207/16 = 12 15 ----+ |

12/16 = 0 12 --+ | |

| | |

C F 3

(Stop when the quotient is 0)

(HEX; Base 16)

(HEX; Base 16)

Product Integer Part 0.4 C C C ...

-------------------------------- | | | |

0.3*16 = 4.8 4 ----+ | | | | |

0.8*16 = 12.8 12 ------+ | | | |

0.8*16 = 12.8 12 --------+ | | |

0.8*16 = 12.8 12 ----------+ | |

: ---------------------+

:

Thus, 3315.3 (DEC) -->

CF3.4CCC... (HEX)

Example: convert the following decimal numbers to the equivalent

binary numbers (36 , 39.5).

 Q R

 36/2 = 18 0

 18/2 = 9 0

 9/2 = 4 1

 4/2 = 2 0

 2/2 = 1 0

1/2 = 0 1

 36 (base 10) = 100100

 Q R

 39/2 = 19 1

 19/2 = 9 1

 9/2 = 4 1

 4/2 = 2 0

 2/2 = 1 0

1/2 = 0 1

 39.5 (base 10) == 100111

 10

 0.5 x 2 = 1

 0 x 2 = 0

The binary equivalent of (39.5)10 is (100111.10)2

Example: convert the following decimal number to equivalent

octal number (266)10 & (20.75)10

266/8 = 33 r =2

33/8 = 4 r =1

4/8 = 0 r =4

 (266)10 = 412

20/8 = 2 r =4 0.75 x 8 = 6.0

2/8 = 0 r =2

 The equivalent octal number is (24.6)8

B. Convert From Any Base to Decimal

Let's think more carefully what a decimal number means. For

example, 1234 means that there are four boxes (digits); and

there are 4 one's in the right-most box (least significant digit), 3

ten's in the next box, 2 hundred's in the next box, and finally 1

thousand's in the left-most box (most significant digit). The total

is 1234:

Original Number: 1 2 3 4

 | | | |

How Many Tokens: 1 2 3 4

Digit/Token Value: 1000 100 10 1

Value: 1000 + 200 + 30 + 4 = 1234

or simply, 1*1000 + 2*100 + 3*10 + 4*1 = 1234

Thus, each digit has a value: 10^0=1 for the least significant

digit, increasing to 10^1=10, 10^2=100, 10^3=1000, and so

forth.

Likewise, the least significant digit in a hexadecimal number

has a value of 16^0=1 for the least significant digit, increasing

to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096

Example. Convert 11001. 0101 expressed in a Binary notation to decimal.

 1 1 0 0 1 . 0 1 0 1

 4 3 2 1 0 -1 -2 -3 -4

 2^4 2^3 2^2 2^1 2^0 2^-1 2^-2 2^-3 2^-4

 = 1*24 + 1*23 + 0*22 + 0*21 + 1*20 +0*2-1 + 1*2-2 +0*2-3 + 1*2-4

 = 1*16 + 1*8 + 0*4 + 0*2 + 1*1 + 0* ½ + 1* ¼ + 0*1/8 +1*1/16

 = 16 + 8+1+ 1/4+ 1/16

 = 25 + 0.25 + 0.0625

 =25.312

Example. Convert 234.14 expressed in an octal notation to

decimal.

 2 3 4 . 1 4

 2 1 0 -1 -2

 8^2 8^1 8^0 8^-1 8^-2

 = 2*82 + 3*81 + 4*80 +1*8-1 + 4*8-2

 = 2*64 + 3*8 + 4*1 +1/8 +4/64

 = 128 + 24 + 4 + 0.125 + 0.062 =156.1875

Examples:

1) Decimal :-

(124)10 = 4 x 100 + 2 x 101 + 1 x 102

(252.512)10 = 2 x 100 + 5 x 101 + 2 x 102 + 5 x 10-1 + 1 x 10-2 +

2 x 10-3

2)Binary :-

(1011101)2 = 1 x 20 + 0 x 21 + 1 x 22 + 1 x 23 + 1 x 24 + 0 x 25 + 1

x 26

 = (93)10

(101.11)2 = 1 x20 + 0 x 21 + 1 x 22 + 1 x 2-1 + 1 x 2-2

 =(5.75)10

3) Octal :-

(537)8 = 7 x 80 + 3 x 81 + 5 x 82

 =(351)10

4) Hexa- Decimal :-

(A01B)16 = 11 x 160 + 1 x 161 + 0 x 162 + 10 x 163

 =(40987)10

C. Relationship between Binary - Octal and

Binary-hexadecimal

There is a direct correspondence between the binary system and

the octal system, with three binary digits corresponding to one octal

digit. Likewise, four binary digits translate directly into one

hexadecimal digit.

Octal-to-Binary:-

 The conversion from octal to binary is performed by converting

each octal digit to its 3-bit binary equivalent. The eight possible

digits are converted as indicated in the following table:

Octal digit 0 1 2 3 4 5 6 7

Binary digit 000 001 010 011 100 101 110 111

Example: convert the following octal number to it's equivalent

binary number (472)8

 4 7 2

 100 111 010

The equivalent binary number is (100111010)2

Binary-to-octal :-

1. group into 3's starting at least significant symbol (if the number

of bits is not evenly divisible by 3, then add 0's at the most

significant end)

2. write 1 octal digit for each group

Example:

 100 010 111 (binary)

 4 2 7 (octal)

 10 101 110 (binary)

 2 5 6 (octal)

Example:-

 convert (177)10 to its 8-bit binary equivalent by first

converting to octal.

Solution:-

 177/8 = 22 + reminder of 1

 22/8 = 2 + reminder of 6

 2/8 = 0 + reminder of 2

 (177)10 = (261)8

 2 6 1

 010 110 001

 (177)10 = (261)8 = (010110001)2

The Octal number is (1274)

Hexadecimal -to-Binary :-

 Each hexadecimal digit is converted to it's 4-bit binary

equivalent as show in the table below :

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Example:

 3 9 C 8

 0011 1001 1100 1000

Binary-to-hexadecimal :-

 This conversion is just the reverse of the Hexadecimal-to-Binary

conversion process.

 Example:

 1001 1110 0111 0000

 9 E 7 0

 1 1111 1010 0011

 1 F A 3

The conversion methods can be used to convert a number from

any base to any other base, but it may not be very intuitive to

convert something like 513.03 to base 7. As an aid in performing

an unnatural conversion, we can convert to the more familiar

base 10 form as an intermediate step, and then continue the

conversion from base 10 to the target base.

Example : Convert the Octal number (752) to Hexadecimal

number .

Step1 :

Octal to Binary Conversion

 7 5 2

 (111 101 010)

So the binary equivalent 111101010

Step2 :

Binary to Hexadecimal Conversion

0001 1110 1010

 1 F A

Example :

Binary Codes

Binary codes are one of the important concepts in digital

electronics. A binary code is a type of digital code consisting of two

digits, 0 and 1. Binary codes act as the primary language in any

digital computing system. Binary codes can represent different

types of information such as numbers, letters, images, videos, etc.

All digital system can understand and manipulate information

expressed in binary language only. In the case of binary codes, each

digit is called a binary digit or bit.

Binary codes represents information using 0 and 1. In a digital

system, the binary codes are organized into segments

like bits or bytes. A bit is either a binary 0 or 1. When 8 bits are

grouped together, then it is called a byte. Each byte represents a

piece of information in a digital system.

Types of Binary Codes

Binary codes can be classified into the following major types

• Weighted Binary Codes

• Non-weighted Binary Codes

• Alphanumeric Code

• Binary Coded Decimal (BCD)

• Error Detecting Code

• Error Correction Code

Weighted Binary Codes

Weighted binary codes are a type of binary code in which each

bit position has a specific weight associated with its positional value.

For example, let a 4-bit weighted binary code 1011. The value of the

code is,

1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

1 × 8 + 0 × 4 + 1 × 2 + 1 × 1

8 + 0 + 2 + 1 = 11

It is clear that the rightmost bit has a positional weight of 20 = 1,

whereas the leftmost bit has a positional weight of 23 = 8.

Examples of weighted binary codes are 8421 BCD code, 5211

code, 2421 code, etc.

Binary-Coded-Decimal (BCD) code :-

In computing and electronic systems, binary-coded decimal

(BCD) is an encoding for decimal numbers in which each digit is

represented by its own binary sequence. Its main virtue is that it

allows easy conversion to decimal digits for printing or display and

faster decimal calculations. Its drawbacks are the increased

complexity of circuits needed to implement mathematical

operations and a relatively inefficient encoding. It occupies more

space than a pure binary representation.In BCD, a digit is usually

represented by four bits which, in general, represent the

values/digits/characters 0-9

To BCD-encode a decimal number using the common encoding,

each decimal digit is stored in a four-bit nibble.

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

 The position weights of the BCD code are 8, 4, 2, 1.

Example: The BCD of decimal 874

 8 7 4

 1000 0111 0100

Example: the BCD encoding for the number 127 would be:

0001 0010 0111

It is very important to understand the difference between the

conversion of a decimal number to binary and the binary coding

of a decimal number. In each case, the final result is a series of

bits. The bits obtained from conversion are binary digit. Bits

obtained from coding are combinations of 1’s and 0’s arranged

according to the rule of the code used.

e.g. the binary conversion of 13 is 1101; the BCD coding of 13 is

00010011

The main advantage of binary coded decimal is that it allows easy

conversion between decimal (base-10) and binary (base-2) form.

However, the disadvantage is that BCD code is wasteful as the

states between 1010 (decimal 10), and 1111 (decimal 15) are not

used. Nevertheless, binary coded decimal has many important

applications especially using digital displays.

Advantages of BCD Codes

• BCD codes are very similar to the decimal system.

• We need to remember the binary equivalent of the decimal

numbers 0 to 9 only.

Disadvantages of BCD Codes

• The addition and subtraction of BCD codes follow different

rules.

• BCD arithmetic is a little more complicated.

• BCD needs more number of bits than binary to represent the

decimal number. e.g. the binary conversion of 13 is 1101; the

BCD coding of 13 is 00010011. So, BCD is less efficient

than binary.

Non-Weighted Binary Codes

In digital electronics, the type of digital or binary codes in

which each bit position does not have a specific weight associated

with it is known as a non-weighted binary code.

In non-weighted binary codes, the value of the bit does not depend

on the position within the number. Each bit position has an equal

positional value.

Examples of non-weighted binary codes include Excess-3 code and

Gray code.

Excess-3-code :-

It is performed in the same manner as BCD except that 3 is

added to each decimal digit before encoding it in binary. Thus, the

code of decimal 0 is 0011, that of 6 is 1001, etc. The following table

shows this code.

Decimal

0 1 2 3 4 5 6 7 8 9

Ex-3code
0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

Gray code :-

 Gray codes are a type of non-weighted code. They are not

arithmetic codes, which means there are no specific weights

assigned to the bit position.

Gray codes have a very special feature that, only one bit will change

each time the decimal number is incremented (see the figure

below). As only one bit changes at a time, gray codes are also

known unit distance code.

The following table shows this code.

Decimal

0 1 2 3 4 5 6 7 8 9

Gray-code
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101

Operations in Binary

1. Addition in Binary

Now that we know binary numbers, we will learn how to add

them. Binary addition is much like your normal everyday addition

(decimal addition), except that it carries on a value of 2 instead of

a value of 10.

For example: in decimal addition, if you add 8 + 2 you get ten,

which you write as 10; in the sum this gives a digit 0 and a carry

of 1. Something similar happens in binary addition when you add

1 and 1; the result is two (as always), but since two is written as

10 in binary, we get, after summing 1 + 1 in binary, a digit 0 and a

carry of 1. Therefore in binary:

No. of state A + B Carry Sum

0 0 + 0 0 0

1 0 + 1 0 1

2 1 + 0 0 1

3 1 + 1 1 0

Problem: 100101 + 10101 = ?.

Answer: 100101 + 10101 = 111010.

Explanation:

 1 1

 1 0 0 1 0 1

+ 1 0 1 0 1

--

 1 1 1 0 1 0

Example :

Example :

Example :

1011.01+11.011= 1110.101

 11 1

 1011.01

 + 11.011

 1110.101

2. Subtraction in Binary

Subtraction and Borrow, these two words will be used very

frequently for the binary subtraction. There are four rules of binary

subtraction.

No. of state A - B Borrow Subtract

0 0 - 0 0 0

1 0 - 1 1 0

2 1 - 0 0 1

3 1 - 1 0 0

Example :

0011010-001100=00001110

 0 10

 0 10 Borrow

 0 0 1 1 0 1 0 =26

 0 0 0 1 1 0 0 =12

 0 0 0 1 1 1 0 = 14

Example :

 0 10 Borrow

 1 1 0 0 =12

 - 1 0 1 0 =10

 0 0 1 0 =2

Example:

 1 10 10

 0 10 0 0 10 borrow

 1 0 1 0 1 . 1 0 1

 - 1 0 1 1 . 1 1

 1 0 0 1 . 1 1 1

3. Multiplications in Binary :

Binary multiplication is similar to decimal multiplication. It is

simpler than decimal multiplication because only 0s and 1s are

involved. There are four rules of binary multiplication.

No. of state A  B Multiplication

0 0  0 0

1 0  1 0

2 1  0 0

3 1  1 1

4. Division in Binary

The binary division operation is similar to the base 10 decimal

system, except the base 2. The division is probably one of the most

challenging operations of the basic arithmetic operations. There are

different ways to solve division problems using binary operations.

Long division is one of them and the easiest and the most efficient

way.

Binary Division Rules

The binary division is much easier than the decimal division when

you remember the following division rules. The main rules of the

binary division include:

• 1÷1 = 1

• 1÷0 = Meaningless

• 0÷1 = 0

• 0÷0 = Meaningless

Similar to the decimal number system, the binary division is

similar, which follows the four-step process:

• Divide

• Multiply

• Subtract

• Bring down

Important Note: Binary division follows the long division method

to find the resultant in an easy way.

Comparison with Decimal Value

(01111100)2 = (1111100)2 = 12410

https://byjus.com/maths/binary-operation/

(0010)2 = (10)2 = 210

You will get the resultant value as 62 when you divide 124 by 2.

So the binary equivalent of 62 is (111110)2

(111110)2 = 6210

Both the binary and the decimal system produce the same result.

Binary Division Examples

Example 1.

Question: Solve 01111100 ÷ 0010

Solution:

Given

01111100 ÷ 0010

Here the dividend is 01111100, and the divisor is 0010

Remove the zero’s in the Most Significant Bit in both the dividend

and divisor, that doesn’t change the value of the number.

So the dividend becomes 1111100, and the divisor becomes 10.

Now, use the long division method.

So, 01111100 ÷ 0010 = 111110

Example 2: Solve using the long division method: 101101 ÷ 101

Solution:

Representation methods

1.Signed Magnitude Representation

The signed magnitude (also referred to as sign and magnitude)

representation is most familiar to us as the base 10 number system.

A plus or minus sign to the left of a number indicates whether the

number is positive or negative as in +12 or -12. In the binary signed

magnitude representation, the leftmost bit is used for the sign,

which takes on a value of 0 or 1 for ‘+’ or ‘-’, respectively. The

remaining bits contain the absolute magnitude.

Consider representing (+12) and (-12) in an eight-bit format:

B7 B6 B5 B4 B3 B2 B1 B0

B7 : for the sign of number

 If the number is (+) => B7=0

 If the number is (-) => B7=1

B0-B6: Is for the magnitude

(+12)10 = (00001100)2

B7 B6 B5 B4 B3 B2 B1 B0

0 0 0 0 1 1 0 0

(−12)10 = (10001100)2

B7 B6 B5 B4 B3 B2 B1 B0

1 0 0 0 1 1 0 0

The negative number is formed by simply changing the sign bit in

the positive number from 0 to 1. Notice that there are both positive

and negative representations for zero: +0= 00000000 and

 -0= 10000000.

B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 0 0 0 0 0

B7 B6 B5 B4 B3 B2 B1 B0
1 0 0 0 0 0 0 0

2.One’s Complement Representation

The one’s complement operation is trivial to perform: convert

all of the 1’s in the number to 0’s, and all of the 0’s to 1’s. We can

observe that in the one’s complement representation the leftmost

bit is 0 for positive numbers and 1 for negative numbers, as it is for

the signed magnitude representation. This negation, changing 1’s

to 0’s and changing 0’s to 1’s, is known as complementing the bits.

Consider again representing (+12)10 and (-12)10 in an eight-bit

format, now using the one’s complement representation:

(+12) in decimal = (00001100) in Binary

(-12) in decimal = (11110011) in Binary

Note again that there are representations for both +0 and -

0, which are 00000000 and 11111111, respectively. As a result,

there are only 28 - 1 = 255 different numbers that can be

represented even though there are 28 different bit patterns.

The one’s complement representation is not commonly used.

This is at least partly due to the difficulty in making comparisons

when there are two representations for 0. There is also additional

complexity involved in adding numbers.

3. Two’s Complement Representation

The two’s complement is formed in a way similar to forming

the one’s complement: complement all of the bits in the number,

but then add 1, and if that addition results in a carry-out from the

most significant bit of the number, discard the carry-out.

Examination of the fifth column of Table above shows that in

the two’s complement representation, the leftmost bit is again 0 for

positive numbers and is 1 for negative numbers. However, this

number format does not have the unfortunate characteristic of

signed-magnitude and one’s complement representations: it has

only one representation for zero. To see that this is true, consider

forming the negative of (+0)10, which has the bit pattern: (+0)10 =

(00000000)2

Forming the one’s complement of (00000000)2 produces

(11111111)2 and adding

1 to it yields (00000000)2, thus (-0)10 = (00000000)2. The

carry out of the leftmost position is discarded in two’s complement

addition (except when detecting an overflow condition). Since

there is only one representation for 0, and since all bit patterns are

valid, there are 2^8 = 256 different numbers that can be

represented.

Starting with (+12)10 =(00001100)2,

1’s complement, or negate the number, producing (11110011)2

Now add one

producing (11110100)2, and

thus (-12)10 = (11110100)2:

 (+12)10 = (00001100)2

(-12)10 = (11110100)2

There is an equal number of positive and negative numbers

provided zero is considered to be a positive number, which is

reasonable because its sign bit is 0. The positive numbers start at 0,

but the negative numbers start at -1, and so the magnitude of the

most negative number is one greater than the magnitude of the most

positive number. The positive number with the largest magnitude

is +127, and the negative number with the largest magnitude is -

128. There is thus no positive number that can be represented that

corresponds to the negative of -128. If we try to form the two’s

complement negative of -128, then we will arrive at a negative

number, as shown below:

(-128)10 = (10000000)2
(-128)10 = (01111111
(-128)10 + (+0000001)2
(-128)10 ——————)2
(-128)10 = (10000000)2

(0) = (0 0 0 0 0 0 0 0)

 1’s complement = (1 1 1 1 1 1 1 1)

 Add 1 = +(0 0 0 0 0 0 0 1)

 The 2’s complement = (0 0 0 0 0 0 0 0)

The two’s complement representation is the representation most

commonly used in conventional computers.

Subtraction using Complements

-Binary Subtraction Using 2's Complement

What is a 2 's Complement?

To implement this method for subtracting two binary numbers,

the first step is to find the 2’s complement of the number to be

subtracted from another number. To get the 2’s complement, first

of all, 1’s complement is found, and then 1 is added. The addition

is the required 2’s complement.

Suppose we need to find the 2’s complement of the binary

number 10010. First, find 1’s complement. To find this, replace all

1 to 0 and all 0 to 1. Therefore, 1’s complement of 10010 will be

01101. Add 1 to this, and we will get the 2’s complement, i.e.

01110.

To learn how to subtract binary numbers using 2's

complement, which is the subtraction of a smaller number from a

larger number using 2’s complement subtraction, the following

steps are to be followed:

• Step 1: Determine the 2’s complement of the smaller number

• Step 2: Add this to the larger number.

• Step 3: Omit the carry. Note that there is always a carry in

this case.

The following example illustrates the above-mentioned steps:

Exampe: Subtract (1010)2 from (1111)2 using 2's complement

method.

Ans:

Step 1: 2's complement of (1010)2 is (0110)2.

Step 2: Add (0110)2 to (1111)2.

This is shown below:

Solved Examples

Q 1. 10110 - 11010

Ans: 11010 has a 2s complement of (00101+1) or 00110.

Add the 2's complement to the minuend (10110+00110) or 11100.

Now taking its complement;

The solution is (00011+1)= - (00100)

Q 2. 10110-01111

Ans: 01111's 2s complement is 10001.

The minuend plus the complement of two (10110-10001) equals

100111.

The response is 00111.

Q 3. 0100-11101

Ans: 11101's 2s complement is 00011

https://www.vedantu.com/maths/minuend

The minuend plus the complement of two (10100- 00011) equals

10111.

Since there is no carry here, the response is 01001.

Q 4. 110101 - 101001

Ans: 101001's complement in 2 is 010111

(110101-010111) Add the minuend and the 2's complement to get

1001100.

Carry, the result's leftmost bit is a 1 and is ignored.

The response is 001100.

1. Suppose you are in base 7 Numeric System, write the

basic digit of this system and suggest a code for it .

2. convert (423)10 to hexadecimal.

4 / P ost
 test : -

key answer
 : -

 post test : -

1 . 0 1 2 3 4 5

6 ,

2 . 1 A 7

1- Convert (641)8 to decimal (Ans. 369).

2- Convert (146)10 to octal then from octal to binary (Ans.

222 and 010010010).

3- Convert (10011101)2 to octal (Ans. 235).

4- Write the next three numbers in this octal counting sequence:

624, 625, 626, ….., ….., ……

5- Convert (975)10 to binary by first converting to octal (Ans.

1111001111).

6- Convert binary 1010111011 to decimal by first converting to

octal (Ans. 699).

 7-Convert (24CE)16 to decimal (Ans. 9422).

 8-Convert (3117)10 to hex, then from hex to binary (Ans. C2D

 and 110000101101)

 9-Convert (1001011110110101)2 to hex (Ans 97B5).

 10-Write the next four numbers in this hex counting sequence:

 E9A, E9B, E9C, E9D, ….., ……., ……, …….

 11-Convert (3527)8 to hex (Ans. (757)16).

 12- 1001 – 0100 .Ans: 0101

 13- 0100 – 1011 . Ans: 1011

 14- 0110 – 0100 . Ans: 0010

 15-10110- 11101 . Ans: 00111

 16- 110-101 .Ans: 001

 17. By using Signed Magnitude Representation method,

represent (+81) and (-81

5/ HomeWorks: -

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

 Logic Gates

For

 Students of First Year

By

 Ethar Abduljabbar Hadi

 Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Techniques

1 / B –Rationale :-

 The objective of studying logic gates is to understand the

fundamental building blocks of digital systems. Logic gates are the

foundation of digital electronics.

1 / C –Central Idea :-

1- Understand Binary Logic.

2- Understand Logic Gates(AND, OR, NOT, NAND, NOR, XOR,

and XNOR).

1 / Overview

3- Different inputs Logic Circuit.

4- Interpret and Create Truth Tables.

5- Translate logical expressions into truth tables and vice versa

1 / D – Performance Objectives

After studying this unit, the student will be able to:-

1- Know the types of logic gates

2- Build simple and complex logic circuits

3- Represent logic circuits in Boolean algebra .

What is the relation between the logic gates

and electronics circuits?

2 / Pretest
 :

A 'Logic Gate' is a type of simple digital circuit that takes

binary inputs and produces binary output. It is used in digital

systems to perform operations on binary variables.

 Logic gates are simple digital circuits that take one or more binary

inputs and produce a binary output. Logic gates are drawn with a

symbol showing the input (or inputs) and the output. Inputs are

usually drawn on the left (or top) and outputs on the right (or

bottom). Digital designers typically use letters near the beginning of

the alphabet for gate inputs and the letter Y for the gate output. The

relationship between the inputs and the output can be described with

a truth table or a Boolean equation. A truth table lists inputs on the

left and the corresponding output on the right. It has one row for

each possible combination of input. A Boolean equation is a

mathematical expression using binary variables.

3 / Logic gates
 : -

https://www.sciencedirect.com/topics/engineering/binary-input
https://www.sciencedirect.com/topics/engineering/binary-input
https://www.sciencedirect.com/topics/computer-science/boolean-equation

1.NOT Gate

A NOT gate has one input, A, and one output, Y, as shown

in Figure bellow. The NOT gate’s output is the inverse of its input.

If A is FALSE, then Y is TRUE. If A is TRUE, then Y is FALSE.

This relationship is summarized by the truth table and Boolean

equation in the figure. The line over A in the Boolean equation is

pronounced NOT, so Y=A¯ is read “Y equals NOT A.” The NOT

gate is also called an inverter.

 2. AND Gate

Two-input logic gates are more interesting. The AND

gate shown in Figure below produces a TRUE output, Y, if and

only if both A and B are TRUE. Otherwise, the output is

FALSE. The Boolean equation for an AND gate can be written in

several ways: Y = A • B, Y = AB, read “Y equals A and B.

3. OR Gate

The OR gate shown in Figure below produces a TRUE

output, Y, if either A or B (or both) are TRUE. The Boolean

equation for an OR gate is written as Y = A + B . Digital designers

normally use the + notation, Y = A + B is pronounced

“Y equals A or B.”

4. NAND Gate

Any gate can be followed by a bubble to invert its operation.

The NAND gate performs NOT AND. Its output is TRUE unless

both inputs are TRUE as shown in figure bellow:

5.NOR Gate

The NOR gate performs NOT OR. Its output is TRUE if

neither A nor B is TRUE as shown in figure below:

6.EX-OR Gate

XOR (exclusive OR, pronounced “ex-OR”) is TRUE

if A or B, but not both, are TRUE. The XOR operation is indicated

by ⊕, a plus sign with a circle around it.

An N-input XOR gate is sometimes called a parity gate and

produces a TRUE output if an odd number of inputs are TRUE.

As with two-input gates, the input combinations in the truth table

are listed in counting order

7.XNOR Gate

Figure below shows the symbol and Boolean equation for a

two-input XNOR (pronounced ex-NOR) gate that performs the

inverse of an XOR.

The XNOR output is TRUE if both inputs are FALSE or both

inputs are TRUE. The two-input XNOR gate is sometimes called

an equality gate because its output is TRUE when the inputs are

equal.

Summery :

• AND gate: the output is 1 if all inputs are 1; otherwise, the

output is 0.

• OR gate: the output is 1 if at least one input is 1; otherwise,

the output is 0.

• XOR gate: the output is 0 if both inputs are same; otherwise,

the output is 1.

• NAND gate: the output is 1 if at lease one input is 0;

otherwise, the output is 0.

• NOR gate: the output is 1 if both inputs are 0; otherwise, the

output is 0.

• NOT gate or inverter: the output is 1 if the input is 0 and the

output is 0 if the input is 1.

Logic gate symbols

 Table 2 is a summary truth table of the input/output

combinations for the NOT gate together with all possible

input/output combinations for the other gate functions. Also note

that a truth table with 'n' inputs has 2n rows. You can compare the

outputs of different gates.

 Logic gates representation using the Truth table

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth

Multiple-Input Gates

Many Boolean functions of three or more inputs exist. The

most common are AND, OR, XOR, NAND, NOR, and XNOR.

An N-input AND gate produces a TRUE output when all N inputs

are TRUE. An N-input OR gate produces a TRUE output when at

least one input is TRUE.

Truth tables :-

 Many logic circuits have more than one input and one or more

outputs. A truth table shows how the logic circuit's output responds

to the various combinations of logic states at the inputs. The formal

for two, three, and four input with one output truth tables are shown

below :

No.of

State in

Decimal

Inputs Output

A B F

0 0 0

1 0 1

2 1 0

3 1 1

https://www.sciencedirect.com/topics/computer-science/boolean-function

If the number of inputs more than 2 ,

The number of states in the truth table = 2 ^ number of inputs

For example If the number of inputs = 3 ,

The number of states in the truth table = 2 ^ 3 = 2*2*2= 8 and the

truth table as shown below :

No. of

states in

decimal

Inputs Output

A B C X

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

For example If the number of inputs = 4 ,

The number of states in the truth table = 2 ^ 4 = 2*2*2*2= 16 and

the truth table as shown below :

No. of

states in

decimal

Inputs Output

A B C D X

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Example

Example : Four-Input And Gate The figure below shows the

symbol and Boolean equation for a four-input AND gate. Create a

truth table.

Solution

Figure bellow shows the truth table. The output is TRUE only if all

of the inputs are TRUE.

Example

Three-Input NOR Gate

Describing logic circuits algebraically

 Any logic circuit, no matter how complex, may be completely

described using the Boolean operations previously defined.

Example:-

 Determine the output expression for the logic indicated below: -

 X=A.B+C X=(A+B).C

Implementing circuits from Boolean expressions :-

 If the operation of a circuit is defined by a Boolean expression, a

logic circuit can be implemented directly from that expression.

Example :

 Implement the logic circuits defined by the following Boolean

expressions :

a)

b)

A

B
A

B C C

A

B

A

Solution :-

 a)

b)

Canonical and Standard Form

Canonical Form – In Boolean algebra, the Boolean function

can be expressed as Canonical Disjunctive Normal Form known

as minterm and some are expressed as Canonical Conjunctive

Normal Form known as maxterm.

• In Minterm, we look for the functions where the output results in “1”

• In Maxterm we look for functions where the output results in “0”.

• We perform the Sum of minterm also known as the Sum of

products(SOP).

• We perform Product of Maxterm also known as Product of

sum(POS).

Boolean functions expressed as a sum of minterms or product of

maxterms are said to be in canonical form.

A Boolean function can be expressed algebraically from a given

truth table by forming a :

• Minterm for each combination of the variables that produces

a 1 in the function and then takes the OR of all those terms.

• Maxterm for each combination of the variables that produces

a 0 in the function and then takes the AND of all those terms.

https://www.geeksforgeeks.org/representation-of-boolean-functions/

1.POS Truth Table

The Sum-of-Products (SOP) Form (Minterm) This form is

sometimes called "minterm". A product term that contains

each of the n-variables factors in either complemented or

uncomplemented form for output digits "1" only, is called SOP.

Consider a function X, whose truth table is as follows:

No. of

states in

decimal

Inputs Output (Minterm)

A B C X

0 0 0 0 1 𝐴 ̅�̅�𝐶 ̅

1 0 0 1 0

2 0 1 0 1 𝐴 ̅𝐵�̅�

3 0 1 1 1 �̅�𝐵𝐶

4 1 0 0 0

5 1 0 1 0

6 1 1 0 1 𝐴 ̅�̅�𝐶

7 1 1 1 1 ABC

The Logical SOP expression for the output digit "1" is written as"

𝐹 = �̅��̅��̅�+ �̅�𝐵�̅�+ �̅�𝐵𝐶 + 𝐴𝐵�̅�+ 𝐴𝐵𝐶

This function com be put in another form such as:

𝐹 = ∑0, 2,3,6,7

Since F= 1 in rows 0, 2,3,6,7 only.

The second form is called the Canonical Sum of Products

(Canonical SOP).

POS Truth Table

A Logical equation can also be expressed as a product of sum

(POS) form (sometimes this method is called "Maxterm". This is

done by considering the combination for F=0 (output = 0).

Consider a function X, whose truth table is as follows:

No. of

states in

decimal

Inputs Output (Maxterm)

A B C X

0 0 0 0 1

1 0 0 1 0 (𝐴 + 𝐵 + 𝐶 ̅)

2 0 1 0 1

3 0 1 1 1

4 1 0 0 0 (𝐴 ̅+ 𝐵+ 𝐶)

5 1 0 1 0 (𝐴 ̅+ 𝐵+ 𝐶 ̅)

6 1 1 0 1

7 1 1 1 1

The function X can be written in POS form by multiplying all the

max-terms when X is LOW(0).

While writing POS, the following convention is to be followed:

So for the above example from the truth table F=0 is in rows 1, 4, 5

hence:

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + �̅�) ∙ (�̅�+ 𝐵 + 𝐶) ∙ (�̅�+ 𝐵+ �̅�)

This is POS form. POS form can be expressed as:

𝐹 = ∏(1, 4, 5)

This form is called the Canonical Product of Sum (Canonical POS).

What is the symbol for SOP and POS?

SOP and POS are two forms of Boolean expression where SOP is

denoted with the sign summation ∑ and POS is denoted by pi

notation Π.

Example of SOP form = AB + BC + CA

Example of POS form = (A + B)(B + C)(C + A)

Converting an SOP Expression into a Truth Table

Consider the following sum of product expression:

Sum of Product Truth Table Form

Example :The following Boolean Algebra expression is given as:

1. Use a truth table to show all the possible combinations of input

conditions that will produces an output.

2. Draw a logic gate diagram for the expression.

Solution :

1.Sum of Product Truth Table Form

2. Logic Gate SOP Diagram

Converting an POS Expression into a Truth Table

Consider the following product of sum expression:

We can now draw up the truth table for the above expression to

show a list of all the possible input combinations

for A, B and C which will result in an output “0”.

Product of Sum Truth Table Form

Example: The following Boolean Algebra expression is given as:

1. Use a truth table to show all the possible combinations of input

conditions that will produces a “0” output.

2. Draw a logic gate diagram for the POS expression.

Solution :

1.Product of Sum Truth Table Form

2. Logic Gate Diagram

Examples: Construct a Truth Table for the logical functions at

points C, D and Q in the following circuit and identify a single logic

gate that can be used to replace the whole circuit.

From the truth table above, column C represents the output function

generated by the NAND gate, while column D represents the output

function from the Ex-OR gate. Both of these two output expressions

then become the input condition for the Ex-NOR gate at the output.

It can be seen from the truth table that an output at Q is present when

any of the two inputs A or B are at logic 1. The only truth table that

satisfies this condition is that of an OR Gate. Therefore, the whole

of the above circuit can be replaced by just one single 2-

input OR Gate.

Examples : Find the Boolean algebra expression for the following

system.

The system consists of an AND Gate, a NOR Gate and finally

an OR Gate. The expression for the AND gate is A.B, and the

expression for the NOR gate is A+B. Both these expressions are

also separate inputs to the OR gate which is defined as A+B. Thus

the final output expression is given as:

Then, the whole circuit above can be replaced by just one

single Exclusive-NOR Gate and indeed an Exclusive-NOR Gate is

made up of these individual gate functions.

Example : Find the Boolean algebra expression for the following

system.

This system may look more complicated than the other two to

analyses but again, the logic circuit just consists of

simple AND, OR and NOT gates connected together.

1. Draw the circuit diagrams to show how a NOR gate can be

made into a NOT gate.

4 / P ost
 test : -

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#norgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#norgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#notgate
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#notgate

1.Convert the following logic gate circuit into a Boolean expression,

writing Boolean sub-expressions next to each gate output in the

diagram:

 key answer
 : -

1 - post test : -

 5/ HomeWorks: -

2.Convert the following logic gate circuit into a Boolean expression,

writing Boolean sub-expressions next to each gate output in the

diagram:

3.An engineer hands you a piece of paper with the following Boolean

expression on it, and tells you to build a gate circuit to perform that

function:

Draw a logic gate circuit for this function.

4.determine the output expression for the following circuit

determine the output logic level if A=1, B=1 and C=0, D=0

5. Design a logic circuit to verify the following functions

• 𝐹 = ∑(0,1,2,4,6,9,11)

• 𝐹 = 𝜫 ∑(0,1,2,5,6)

A. Draw the circuit for the function shown below :

𝐹 = (�̅� + 𝐵). (�̅� + 𝐶)

𝑄 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅) + (𝑍. 𝑊̅̅ ̅̅ ̅̅

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

Boolean Algebra
For

 Students of First Year

By

 Ethar Abduljabbar Hadi

Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Technologies

1 / B –Rationale :-

 Boolean algebra, in the context of logic, provides a powerful

framework for analyzing and simplifying logical statements and

arguments. It allows us to represent logical relationships using

algebraic techniques, making it easier to determine the validity of

inferences and the structure of logical systems. This is crucial in

fields like digital circuit design, computer programming, and

philosophical logic.

1 / Overview

2 / C –Central Idea :-

1. Understand Boolean Algebra rules.

2. Simplify Logical Expressions.

1 / D – Performance Objectives

After studying this unit, the student will be able to:-

1. Know the Boolean Algebra rules.

2. know how to Simplify Logical Expressions.

What is the advantage of minimizing the

Logic circuits?

2 / Pretest
 :

Boolean Algebra is a branch of algebra that deals with boolean

values—true and false. It is fundamental to digital logic design and

computer science, providing a mathematical framework for

describing logical operations and expressions

Boolean Algebra Operations

Various operations are used in Boolean algebra but the basic

operations that form the base of Boolean Algebra are.

3 / Boolean Algebra

Laws for Boolean Algebra

The basic laws of the Boolean Algebra are added in the table added

below,

NO. Law OR form AND form

1. Identity Law A + 0 = A A.1 = A

2. Idempotent Law A + A = A A.A = A

3. Commutative Law A + B = B + A A.B = B.A

4.
Associative Law

A+ (B + C) = (A + B)

+ C
A.(B.C) = (A.B).C

5.
Distributive Law

A + BC = (A + B).(A

+ C)

A.(B + C) = A.B +

A.C

6. Inversion Law (A’)’ = A (A’)’ = A

7.
De Morgan’s Law (A + B)’ = (A)’.(B)’

(A.B)’ = (A)’ +

(B)’

1. Boolean Algebraic Identities

In mathematics, an identity is a statement true for all possible

values of its variable or variables.

The algebraic identity of x + 0 = x tells us that anything (x) added

to zero equals the original “anything,” no matter what value that

“anything” (x) may be.

Like ordinary algebra, Boolean algebra has its own unique

identities based on the bivalent states of Boolean variables.

1.1 Additive Identities

1.1.1 Adding Zero

The first Boolean identity is that the sum of anything and zero is

the same as the original “anything.”

This identity is no different from its real-number algebraic

equivalent:

A+0=A

No matter what the value of A, the output will always be the same:

when A=1, the output will also be 1; when A=0, the output will

also be 0.

https://www.allaboutcircuits.com/technical-articles/boolean-identities/

1.1.2 Adding One

The next identity is most definitely different from any seen in

normal algebra.

Here we discover that the sum of “anything” and one is one:

A+1=1

 No matter what the value of A, the sum of A and 1 will always be

1. In a sense, the “1” signal overrides the effect of A on the logic

circuit, leaving the output fixed at a logic level of 1.

1.1.3 Adding a Quantity to Itself

Next, we examine the effect of adding A and A together, which is

the same as connecting both inputs of an OR gate to each other

and activating them with the same signal:

A+A=A

Thus, when we add a Boolean quantity to itself, the sum is equal to

the original quantity: 0 + 0 = 0, and 1 + 1 = 1

1.1.4 Adding a Quantity to Its Complement

Introducing the uniquely Boolean concept of complementation into

an additive identity, we find an interesting effect.

Since there must be one “1” value between any variable and its

complement, and since the sum of any Boolean quantity and 1 is 1,

the sum of a variable and its complement must be 1:

A+A’=1

1.2 Multiplicative Identities

Just as there are four Boolean additive identities (A+0, A+1, A+A,

and A+A’), so there are also four multiplicative identities: Ax0,

Ax1, AxA, and AxA’. Of these, the first two are no different from

their equivalent expressions in regular algebra:

1.2.1 Multiplying by 0 or 1

 0.A=0 1.A=A

1.2.2 Multiplying a Quantity by Itself

The third multiplicative identity expresses the result of a Boolean

quantity multiplied by itself.

since 0 x 0 = 0 and 1 x 1 = 1:

A.A=A

1.2.3 Multiplying a Quantity by Its Complement

The fourth multiplicative identity has no equivalent in regular

algebra because it uses the complement of a variable, a concept

unique to Boolean mathematics.

Since there must be one “0” value between any variable and

its complement, and since the product of any Boolean quantity

and 0 is 0, the product of a variable and its complement must be 0:

 A.A’=A

To summarize, then, we have four basic Boolean identities for

addition and four for multiplication:

2. Commutative Law

Binary variables in Boolean Algebra follow the commutative

law. This law states that operating boolean variables A and B is

similar to operating boolean variables B and A. That is,

• A. B = B. A

• A + B = B + A

3.Associative Law

Associative law state that the order of performing Boolean

operator is illogical as their result is always the same. This can be

understood as,

• (A . B) . C = A . (B . C)

• (A + B) + C = A + (B + C)

•

4. Distributive Law

Boolean Variables also follow the distributive law and the

expression for Distributive law is given as:

• A . (B + C) = (A . B) + (A . C)

PROOF: Distributivity of AND over OR

NO.

Of

state

inputs LHS RHS

A B C (B+C) A⋅(B+C) (A.B) (A.C) (A⋅B)+(A⋅C)

0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0

2 0 1 0 1 0 0 0 0

3 0 1 1 1 0 0 0 0

4 1 0 0 0 0 0 0 0

5 1 0 1 1 1 0 1 1

6 1 1 0 1 1 1 0 1

7 1 1 1 1 1 1 1 1

• A + (B . C) = (A + B) . (A + C)

PROOF: Distributivity of OR over AND

NO.

Of

state

inputs LHS RHS

A B C (B.C) A+(B.C) (A+B) (A+C)

(A + B)

. (A +

C)

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0

2 0 1 0 0 0 1 0 0

3 0 1 1 1 1 1 1 1

4 1 0 0 0 1 1 1 1

5 1 0 1 0 1 1 1 1

6 1 1 0 0 1 1 1 1

7 1 1 1 1 1 1 1 1

 5.Double Complement

Another identity that has to do with complementation is that

of the double complement: a variable inverted twice.

Complementing a variable twice (or any even number of

times) results in the original Boolean value.

This is analogous to negating (multiplying by -1) in real-

number algebra: an even number of negations cancel to leave the

original value:

Absorption Law

One of the more useful Boolean identities is absorption

because it allows users to remove unneeded variables. However, in

addition, it also allows us to introduce variables that then frequently

allow us to make even greater simplifications

 can just distribute the OR over the AND. Let's use the first approach

as this is the one that is usually easier to see in practice.

A+(A⋅B)=(A+A).(A+B)

 = A(A+B)

 =AA+AB

 = A+AB

 =A(1+B)

 =A

NO.

Of

State

inputs LHS RHS

A B (A.B) A+(A.B) A

0 0 0 0 0 0

1 0 1 0 0 0

2 1 0 0 1 1

3 1 1 1 1 1

A⋅(A+B)=(AA)+(A.B)

 =A+AB

 =A(1+B)

 =A

NO.

Of

state

inputs LHS RHS

A B (A+B) A.(A+B) A

0 0 0 0 0 0

1 0 1 1 0 0

2 1 0 1 1 1

3 1 1 1 1 1

Two very important rules of simplification in Boolean algebra are

as follows:

Boolean Algebra Theorems

There are two basic theorems of great importance in Boolean

Algebra, which are De Morgan’s First Laws, and De Morgan’s

Second Laws. These are also called De Morgan’s Theorems. Now

let’s learn about both in detail.

1.De Morgan’s First laws

De Morgan’s Law states that the complement of the product

(AND) of two Boolean variables (or expressions) is equal to the

sum (OR) of the complement of each Boolean variable (or

expression).

(A.B)’ = (A)’ + (B)’

The truth table for the same is given below:

A B (A)’ (B)’ (A.B)’ (A)’ + (B)’

0 0 1 1 1 1

0 1 1 0 1 1

1 0 0 1 1 1

1 1 0 0 0 0

2. De Morgan’s Second laws

Statement: The Complement of the sum (OR) of two Boolean

variables (or expressions) is equal to the product(AND) of the

complement of each Boolean variable (or expression).

(A + B)’ = (A)’.(B)’

Proof:

The truth table for the same is given below:

A B (A)’ (B)’ (A+B)’ (A)’.(B)’

0 0 1 1 1 1

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

We can clearly see that truth values for (A + B)’ are equal to

truth values for (A)’.(B)’, corresponding to the same input. Thus,

De Morgan’s Second Law is true

Advantages, Disadvantages of Boolean Algebra :

Advantages

• Simplifies the design and analysis of digital circuits.

• Reduces the complexity of logical expressions and functions.

• Enhances efficiency in digital logic design and computer

programming.

Disadvantages

• Limited to binary values, which may not always represent

real-world complexities.

• Requires a strong understanding of logical operators and

rules.

Proof the first and second laws of De Morgan’s .

4 / P ost
 test : -

 key answer
 : -

1 - post test : -

1. Simplify the following expression using Boolean algebra,

then design a logic circuit to verify it.

𝐹 = (�̅� + �̅�)(𝑋 + 𝑌) + (�̅� + 𝑌)(𝑋 + �̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2. Simplify the following expression using Boolean algebra,

then design a logic circuit to verify it.

𝐹 = (𝐴�̅� + 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (�̅� + �̅�𝐶̅̅̅ ̅̅)

3. design the logic circuit with following requirements:

F=1 , If the inputs less than 5

 F=0 , Otherwise

A. Write the truth table .

B. Write the SOP function.

C. Simplify F .

D. Draw the circuit in step 3.

5/ HomeWorks: -

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

K-Map (Karnaugh Map)
For

 Students of First Year

By

 Ethar Abduljabbar Hadi

 Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Technologies

1 / B –Rationale :-

 Karnaugh Maps (K-maps), in the context of logic, provides a

powerful framework for analyzing and simplifying logical

statements and arguments. It allows us to represent logical

relationships using algebraic techniques, making it easier to

determine the validity of inferences and the structure of logical

systems. This is crucial in fields like digital circuit design, computer

programming, and philosophical logic.

We study Karnaugh Maps (K-maps) in logic design because they

help us simplify Boolean expressions, which is essential in

designing efficient digital circuits.

1 / Overview

3 / C –Central Idea :-

1.Understand Karnaugh Maps (K-maps) rules.

2.Simplify Logical Expressions by using Karnaugh Maps (K-

maps) .

3.Design of Efficient Digital Circuits

1 / D – Performance Objectives

After studying this unit, the student will be able to:-

1. Know the Karnaugh Maps (K-maps rules.

2. know how to Simplify Logical Expressions.

3. K-maps make it easier to minimize Boolean functions without

needing long algebraic manipulations.

4. Simplified expressions use fewer logic gates, saving space and

power.

1.Why we need another simplification method (k-map) ?

2. What is the difference between K-maps and Boolean Algebra

to minimize Boolean functions ?

In many digital circuits and practical problems, we need to

find expressions with minimum variables. We can minimize

Boolean expressions of 3, 4 variables very easily using K-map

without using any Boolean algebra theorems.

2 / Pretest
 :

3 / K-Map (Karnaugh Map)

Steps to Solve Expression using K-map

1. Select the K-map according to the number of variables.

2. Identify minterms or maxterms as given in the problem.

3. For SOP put 1’s in blocks of K-map respective to the

minterms (0’s elsewhere).

4. For POS put 0’s in blocks of K-map respective to the max

terms (1’s elsewhere).

5. Make rectangular groups containing total terms in power of

two like 2,4,8 ..(except 1) and try to cover as many elements

as you can in one group.

6. From the groups made in step 5 find the product terms and

sum them up for SOP form.

2 Variable Truth Table and K-Map

A logical specification is often created using a truth table.

A truth table is a list of the inputs (A, B) on the left and the

corresponding output (F) on the right. See Figure 1 showing a 2

variable truth table and corresponding K-Map.

Each cell of the K-Map represents an input state (A, B). The

value of each cell represents the output function (F). In order to find

the minimum logic function, it is necessary to identify matching

adjacent cells. Once these matches are found, an expression can be

written.

3 Variable Truth Table and K-Map

Below is an example of a 3 variable K-Map. Notice that the cells are ordered in the K-Map

to ensure only one bit changes on any adjacent cell. From left to right

instead of 0, 1, 2, 3, 4, 5 ,6, 7, the cell ordering is 0, 1, 2, 3, 6, 7, 4,

5.

000 010 110 100

001 011 111 101

4 Variable Truth Table and K-Map

Below is an example of a 4 variable K-Map. Notice that the

cells are ordered in the K-Map to ensure only one bit changes on

any adjacent cell.

 4-Variables K-map

Examples :

 For the following function : -

Q = ∏M(5,7,13,15)

1. Write the truth table for the function above.

2. By using K-map , Simplify Q

Design the circuit to implement the function in step 2.

4 / P ost
 test : -

1. Four chairs A,B,C,D are placed in a circle. Each chair may be occupied

(“1”) or empty (“0”) .A Boolean function F is “1” if and only if there are

two or more adjacent chairs that are empty .

a. Give the truth table defining the Boolean function F.

b. Simplify the function F and draw the logic circuit .

2. Design a digital system whose output is defined as logically low if the 4-

bit input binary number is a multiple of 3; otherwise, the output will be

logically high. The output is defined if and only if the input binary number

is greater than 2.

In the given example:

• The number of input variables = 4, which we will call A, B, C, and D.

• The number of output variables = 1, which we will call Y.

Where:

• Y = "Don't Care," if the input number is less than 3 (orange entries in

the truth table)

• Y = 0, if the input number is an integral multiple of 3 (green entries in

the truth table)

• Y = 1, if the input number is not an integral multiple of 3 (blue entries

in the truth table)

 5/ HomeWorks: -

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

Combinational Logic Circuits
For

 Students of First Year

By

 Ethar Abduljabbar Hadi

Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Technologies

1 / B –Rationale :-

The idea of studying combinational logic circuits is rooted in

the goal of understanding and designing circuits that produce

outputs based solely on current inputs — with no memory or

feedback involved. These circuits form the foundation of digital

systems, such as computers, calculators, and embedded systems..

This is crucial in fields like digital circuit design, computer

programming, and philosophical logic.

1 / Overview

1 / C –Central Idea :-

1.Understand the Foundation of Digital Electronics.

2. learning how to design combinational logic Circuits

3.Design Digital Circuits like Adder, subtracter.

1 / D – Performance Objectives

After studying this unit, the student will be able to:-

 Understand Foundation of Digital Electronics where ,

Combinational logic is the building block for all digital systems.

It includes essential components like adders, multiplexers,

decoders, encoders, and comparators

What do you know about Combinational Logic Circuits?

2 / Pretest
 :

Combinational Logic Circuits are memoryless digital logic

circuits whose output at any instant in time depends only on the

combination of its inputs.

Unlike Sequential Logic Circuits whose outputs are dependant

on both their present inputs and their previous output state giving

them some form of Memory. The outputs of Combinational Logic

Circuits are only determined by the logical function of their current

input state, logic “0” or logic “1”, at any given instant in time.

The result is that combinational logic circuits have no

feedback, and any changes to the signals being applied to their

inputs will immediately have an effect at the output. In other words,

in a Combinational Logic Circuit, the output is dependant at all

times on the combination of its inputs. Thus a combinational circuit

is memoryless.

3 / Combinational Logic Circuits

So if one of its inputs condition changes state, from 0-1 or 1-

0, so too will the resulting output as by default combinational logic

circuits have “no memory”, “timing” or “feedback loops” within

their design.

Combinational Logic

Common combinational circuits made up from individual logic

gates that carry out a desired application include Multiplexers, De-

multiplexers, Encoders, Decoders, Full and Half Adders etc.

Classification of Combinational Logic

Binary Adders

A common and very useful combinational logic circuit which

can be constructed using just a few basic logic gates allowing it to

add together two or more binary numbers is the Binary Adder.

 123 A (Augend)

+ 789 B (Addend)

912 SUM

Binary Adders are arithmetic circuits in the form of half-

adders and full-adders used to add together two binary digits.

1.Half Adder Circuit

A half adder is a logical circuit that performs an addition

operation on two binary digits. The half adder produces a sum and

a carry value which are both binary digits.

Logic circuit Truth Table

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

For the SUM bit:

SUM = A XOR B = A ⊕ B

For the CARRY bit:

CARRY = A AND B = A.B

From the truth table of the half adder we can see that the SUM

(S) output is the result of the Exclusive-OR gate and the Carry-out

(Cout) is the result of the AND gate. Then the Boolean expression

for a half adder is as above.

2.Full Adder Circuit

The main difference between the Full Adder and the

previous Half Adder is that a full adder has three inputs. The same

two single bit data inputs A and B as before plus an

additional Carry-in (C-in) input to receive the carry from a previous

stage as shown below.

Full Adder Block Diagram

Then the full adder is a logical circuit that performs an

addition operation on three binary digits and just like the half adder,

it also generates a carry out to the next addition column. Then

a Carry-in is a possible carry from a less significant digit, while

a Carry-out represents a carry to a more significant digit.

Full Adder Truth Table with Carry

Logic circuit Truth Table

A B
C-

in
Sum

C-

out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Then the Boolean expression for a full adder is as follows.

For the SUM (S) bit:

SUM = (A XOR B) XOR Cin = (A ⊕ B) ⊕ Cin

For the CARRY-OUT (Cout) bit:

CARRY

OUT = A AND B OR Cin(A XOR B) = A.B + Cin(A ⊕ B)

(Implementation of Full Adder using Half Adder)

 Full Binary Adder Logic Diagram

As the full adder circuit above is basically two half adders

connected together, the truth table for the full adder includes an

additional column to take into account the Carry-in, CIN input as

well as the summed output, S and the Carry-out, COUT bit.

An n-bit Binary Adder

We have seen above that single 1-bit binary adders can be

constructed from basic logic gates. But what if we wanted to add

together two n-bit numbers, then n number of 1-bit full adders need

to be connected or “cascaded” together to produce what is known as

a Ripple Carry Adder.

A “ripple carry adder” is simply “n“, 1-bit full adders cascaded

together with each full adder representing a single weighted column

in a long binary addition. It is called a ripple carry adder because the

carry signals produce a “ripple” effect through the binary adder from

right to left, (LSB to MSB).

For example, suppose we want to “add” together two 4-bit

numbers, the two outputs of the first full adder will provide the first

place digit sum (S) of the addition plus a carry-out bit that acts as

the carry-in digit of the next binary adder.

A 4-bit Ripple Carry Binary Adder

Binary Subtractor

The Binary Subtractor is another type of combinational

arithmetic circuit that produces an output which is the subtraction

of two binary numbers.

As their name implies, a Binary Subtractor is a decision

making circuit that subtracts two binary numbers from each other,

for example, X – Y to find the resulting difference between the two

numbers. the binary subtractor produces a DIFFERENCE, D by

using a BORROW bit, B from the previous column.

We learnt from our maths lessons at school that the minus sign,

“–” is used for a subtraction calculation, and when one number is

subtracted from another, a borrow is required if the subtrahend is

greater than the minuend. Consider the simple subtraction of the two

denary (base 10) numbers below.

1. Half Subtractor

Symbol Truth Table

X Y DIFFERENCE BORROW

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

From the truth table of the half subtractor we can see that the

DIFFERENCE (D) output is the result of the Exclusive-OR gate

and the Borrow-out (Bout) is the result of the NOT-

AND combination. Then the Boolean expression for a half

subtractor is as follows.

For the DIFFERENCE bit:

D = X XOR Y = X ⊕ Y

For the BORROW bit

B = not-X AND Y = X’.Y

2.Full Binary Subtractor Circuit

Full Binary Subtractor Block Diagram

Full Subtractor Truth Table

Symbol Truth Table

X Y B-in Diff. B-out

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Then the Boolean expression for a full subtractor is as follows.

For the DIFFERENCE (D) bit:

which can be simplified too:

For the BORROW OUT (BOUT) bit:

which will also simplify too:

Then the combinational circuit of a “full subtractor” performs

the operation of subtraction on three binary bits producing outputs

for the difference D and borrow B-out. Just like the binary adder

circuit, the full subtractor can also be thought of as two half

subtractors connected together, with the first half subtractor passing

its borrow to the second half subtractor as follows.

Full Binary Subtractor Logic Diagram

Binary Adder-Subtractor

A binary adder-subtractor is a digital circuit that is used to

perform two basic arithmetic operations namely, binary addition and

binary subtraction. It is an important component in various digital

systems like computers, calculators, etc.

The most significant advantage of using a binary adder-

subtractor is that it combines the addition and subtraction operations

in a single circuit which results in compact size and lower cost.

This Circuit Requires prerequisite knowledge of Xor Gate,

Binary Addition and Subtraction, and Full Adder.

Let's consider two 4-bit binary numbers A and B as inputs to the

Digital Circuit for the operation with digits

https://www.geeksforgeeks.org/xor-gate/

A0 A1 A2 A3 for A

B0 B1 B2 B3 for B

The circuit consists of 4 full adders since we are performing

operations on 4-bit numbers. There is a control line K that holds a

binary value of either 0 or 1 which determines that the operation is

carried out is addition or subtraction.

As shown in the figure, the first full adder has a control line

directly as its input (input carry Cin), The input A0 (The least

significant bit of A) is directly input in the full adder. The third input

is the EXOR of B0 and K. The two outputs produced are

Sum/Difference (S0) and Carry (C0).

In this circuit, the input K is called the mode input. It controls

the operation of the circuit as described below:

• When K = 0, the circuit operates as a binary adder. Under

this mode, we get B⊕0=B. Thus, each full adder receives the

inputs A and B and performs their addition, i.e., A + B+0.

• When K = 1, the circuit operates as a binary subtractor. In

this case, w get B⊕1=1s complement(B) and the input carry

Cin = 1. Under this mode, the full adders receive B inputs in

their complemented form and a 1 is added through the input

carry Cin. Hence, the final output of the circuit is A+ 2s

complement of Bx which is the subtraction of A and B.

Advantage of Binary Adder and Subtractor

• Low Design Complexity: Both binary adder and subtractor

circuits are easy to design using logic gates like XOR, AND,

and OR.

• High-Speed Operations: Binary adders such as parallel

adders-and subtractors can do their operations at a high

speed.

• Versatility: It allows the same hardware : to add ,to subtract.

Saving on redundancy of separate components and designs

for different functions.

Disadvantages of Binary Adder and Subtractor

• Carry Propagation Delay: In a simple ripple carry adder,

the carry has to ripple through all stages of the adder; this

increases the computation time as more bits are added. This

will be more for a larger number of bits in binary.

• Hardware Complexity: The more the number of bits, the

more complicated the circuit gets due to more gates. To

eliminate the problem of delays, higher versions of adders

such as carry lookahead adders are included which increases

complexity.

In Adder-Subtractor circuit , can you replace the X0R logic gate by another gate, Why?

By using Adder-Subtractor circuit, implement the operation (9-5)

4 / P ost
 test : -

 5/ HomeWorks: -

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Department of Computer Networks and Software Techniques

 Learning package

 In

Sequential Logic Circuits
For

 Students of First Year

By

 Ethar Abduljabbar Hadi

 Assistant Lecturer

Dep. Of Computer Networks and Software Techniques
2025

1 / A –Target population :-

For First year students

Technological institute of Basra

Dep. Of Computer Networks and Software Technologies

1 / B –Rationale :-

The idea of studying sequential logic circuits is to understand

how digital systems can store, remember, and respond to sequences

of inputs over time — in other words, how they gain memory and

timing behavior. This is crucial in fields like digital circuit design,

computer programming, and philosophical logic.

2 / C –Central Idea :-

1.Understand the Foundation of Digital Electronics.

2. learning how to design Sequential Logic Circuits.

1 / Overview

1 / D – Performance Objectives

After studying this unit, the student will be able to:-

1. Understand Foundation of Digital Electronics where ,

Sequential logic is the building block for all digital systems.

Introduce the Concept of Memory

2. Unlike combinational circuits, sequential circuits remember

past inputs using storage elements (like flip-flops).

3. Output depends on both current input and past states.

Sequential logic circuits allow digital systems to store data and

operate over time, making them essential for building intelligent,

interactive, and real-time systems like CPUs, timers, and state

machines.

What do you know about Sequential Logic Circuits?

2 / Pretest
 :

Unlike Combinational Logic circuits that change state

depending upon the actual signals being applied to their inputs at

that time, Sequential Logic circuits have some form of inherent

“Memory” built in.

This means that sequential logic circuits are able to take into

account their previous input state as well as those actually present,

a sort of “before” and “after” effect is involved with sequential

circuits.

In other words, the output state of a “sequential logic circuit”

is a function of the following three states, the “present input”, the

“past input” and/or the “past output”. Sequential Logic circuits

remember these conditions and stay fixed in their current state until

the next clock signal changes one of the states, giving sequential

logic circuits “Memory”.

3 / Sequential Logic Circuits

The word “Sequential” means that things happen in a

“sequence”, one after another and in Sequential Logic circuits, the

actual clock signal determines when things will happen next. Simple

sequential logic circuits can be constructed from

standard Bistable circuits such as: Flip-

flops, Latches and Counters

Flip Flop in Digital Electronics

A flip-flop in digital electronics is a circuit with two stable

states that can be used to store binary data. The stored data can be

changed by applying varying inputs. Flip-flops and latches are

fundamental building blocks of digital electronics systems used in

computers, communications, and many other types of systems. Both

are used as data storage elements.

The term “Flip-flop” relates to the actual operation of the

device, as it can be “flipped” into one logic Set state or “flopped”

back into the opposing logic Reset state.

• Types of Flip-Flop in Electronics and Their Working

o 1. S-R Flip Flop

o 2. JK Flip-Flop

o 3. D Flip-Flop

o 4. T Flip-Flop

1.The Set-Reset (S-R) Flip-Flop.

An S-R flip-flop has two inputs named Set (S) and Reset (R),

and two outputs Q and Q'. The outputs are complement of each

other, i.e., if one of the outputs is 0 then the other should be 1. This

can be implemented using NAND or NOR gates. The NAND gate

S-R flip-flop is shown in Figure below:-

Truth Table for this Set-Reset Function

https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#flip-flop-types
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#1-sr-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#2-jk-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#3-d-flip-flop
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#4-t-flip-flop

2. JK Flip-Flop
The JK flip-flop is an improvement on the SR flip-flop where

S=R=1 is not a problem.

The input condition of J=K=1 gives an output inverting the

output state. However, the outputs are the same when one tests the

circuit practically.

In simple words, If J and K data input are different (i.e. high

and low), then the output Q takes the value of J at the next clock

edge. If J and K are both low, then no change occurs.

If J and K are both high at the clock edge, then the output will

toggle from one state to the other. JK Flip-Flops can function as Set

or Reset Flip-flops.

JK Flip-flop Truth Table:

3. D Flip-Flop

Delay or D flip-flop is a better alternative that is very popular

with digital electronics. They are commonly used for counters, shift

registers, and input synchronization.

D Flip-Flop Circuit

In the D flip-flops, the output can only be changed at the clock

edge, and if the input changes at other times, the output will be

unaffected.

Truth Table:

The change of state of the output is dependent on the rising edge of

the clock. The output (Q) is the same as the input and can only

change at the rising edge of the clock.

4. T Flip-Flop

A T flip-flop is like a JK flip-flop. These are single-input

versions of JK flip-flops. This modified form of the JK is obtained

by connecting inputs J and K together. It has only one input along

with the clock input.

T Flip Flop Circuit

These flip-flops are called T flip-flops because of their ability to

complement their state i.e. Toggle, hence they are named Toggle

flip-flops.

Truth Table:

Applications:

These are the various types of flip-flops being used in digital

electronic circuits and the applications of Flip-flops are as specified

below.

• Counters

• Frequency Dividers

• Shift Registers

• Storage Registers

https://www.electronicsforu.com/technology-trends/learn-electronics/decade-counter-circuit-basics

1. Holdsworth, Brian, and Clive Woods. Digital logic design. Elsevier, 2002.

2. Alam, Mansaf, and Bashir Alam. Digital Logic Design. PHI Learning Pvt. Ltd., 2015.

3. Dally, William James, and R. Curtis Harting. Digital design: a systems approach.

Cambridge University Press, 2012.

4. https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/

5. https://www.electronics-tutorials.ws/_1.html

6.https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-

applications/#sr-flip-flop

1 / References

https://www.geeksforgeeks.org/digital-logic/digital-electronics-logic-design-tutorials/
https://www.electronics-tutorials.ws/_1.html
https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-applications/#sr-flip-flop
https://www.geeksforgeeks.org/digital-logic/flip-flop-types-their-conversion-and-applications/#sr-flip-flop

