

Ministry of high Education and Scientific Research

Southern Technical University
Technological institute of Basra

Dep. Of Computer network and software technologies

Learning package

Network Programming ()
For

Second year students

By
Dr. Hassan Almazini

Lecturer
Dep. Of Computer network and software technologies

2025

Course Description

Course Name:
Network Programming

Course Code:
Semester / Year:
Semester

Description Preparation Date:
24/ 06/ 2025

Available Attendance Forms:
Attendance only

Number of Credit Hours (Total) / Number of Units (Total)
60 hours/4 hour weekly/9 unit

Course administrator's name (mention all, if more than one name)
Name: Dr. Hassan Almazini

Email: hassan.f.abbas@stu.edu.iq
Course Objectives

1. Understand the OSI and TCP/IP network models and apply them in programming.

2. Gain proficiency in network programming using Python and the socket interface.

3. Design and implement applications that use UDP and TCP protocols.

4. Develop client and server programs that communicate using HTTP protocols.

5. Manage messaging and message queues using technologies like RabbitMQ.

6. Utilize network management protocols such as SNMP.

7. Distinguish between switching and routing techniques and explain their importance in

modern network environments.

•
•
•

mailto:hassan.f.abbas@stu.edu.iq

8. Apply concurrent programming techniques and handle common issues such as deadlocks.

Teaching and Learning Strategies
1. Cooperative Concept Planning Strategy.

2. Brainstorming Teaching Strategy.

3. Note-taking Sequence Strategy.

Course Structure

Hours

Required Learning
Outcomes

Unit or subject name

Learning method

Evaluation
method

1
4 hours (2

Theory + 2 Lab)

Understand OSI and TCP/IP

models and basic networking

devices.

Review of Networking Concepts
Lecture & lab practice on network

models and devices.

Weekly quizzes, lab

reports

2
4 hours (2

Theory + 2 Lab)

Learn Python programming

basics.
Introduction to Python

Coding exercises and live

demonstrations.
Coding assignments

3
4 hours (2

Theory + 2 Lab)

Use sockets to program UDP

connections.

Python Sockets Programming -

UDP

Lab implementation of UDP

server/client.
Lab tests

4
4 hours (2

Theory + 2 Lab)

Use sockets to program TCP

connections.

Python Sockets Programming -

TCP

Lab implementation of TCP

server/client.
Lab reports

5
4 hours (2

Theory + 2 Lab)
Implement HTTP clients. HTTP Clients

Develop Python scripts using

HTTP libraries.
Weekly quizzes

6
4 hours (2

Theory + 2 Lab)
Develop basic HTTP servers. HTTP Servers

Build simple web servers with

Python.
Lab demonstration

7
4 hours (2

Theory + 2 Lab)

Use Message Queues for

async tasks.
Messaging and Message Queues Implement tasks using RabbitMQ. Lab project

W
ee

ks

8
4 hours (2

Theory + 2 Lab)

Understand basics of network

management protocols.
Network Management (SNMP)

Configure SNMP tools and

practice queries.
SNMP lab test

9
4 hours (2

Theory + 2 Lab)

Explain switching and

routing concepts.
Switching and Routing Essentials

Simulation of switches/routers

using software tools.
Weekly exam

10
4 hours (2

Theory + 2 Lab)

Apply concurrency and

handle deadlocks in network

programs.

Concurrency and Deadlocks
Code examples with threading

and deadlock scenarios.
Practical coding test

11
4 hours (2

Theory + 2 Lab)

Develop a mini project

integrating learned concepts.
Project Implementation (Part 1)

Guided lab sessions for project

development.
Project progress report

12
4 hours (2

Theory + 2 Lab)

Complete and present the

project.
Project Implementation (Part 2)

Finalize project and deliver

presentation.
Project presentation

13
4 hours (2

Theory + 2 Lab)

Review and prepare for final

exam.

Revision & Final Exam

Preparation
Mock exams and Q&A session. Final written exam

Course Evaluation
• Weekly quizzes & lab reports.

• Practical coding tests.

• Final term project & presentation.

• Written final exam.

Learning and Teaching Resources
Data and Computer Communications William Stallings

Essential SNMP O'Reilly Media
Python Official Documentation python.org/doc

RabbitMQ Official Documentation
rabbitmq.com

http://www.python.org/doc/
https://www.rabbitmq.com/

Network Programming

1) Review of Related Networking Concepts

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
1 / B – Rationale: Understanding basic networking concepts and
layered models is essential to grasp the foundations of how
modern network applications operate and communicate.
1 / C – Central Idea:

1. Overview of OSI vs TCP/IP models
2. Networking devices and data flow
3. Encapsulation and decapsulation
4. Client-server architecture

1 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Differentiate between OSI and TCP/IP models.

2. Identify and describe the functions of networking devices.

3. Explain encapsulation and decapsulation processes.

4. Describe client-server architecture and communication.

Today, most programs are designed to work with networks!

2

OSI Model

3

Source: Data and Computer Communications, 8th edition, By: William Stallings

Why layered?

Networking Devices

4

OSI Model vs. TCP/IP Model

5

Source: Data and Computer Communications, 8th edition, By: William Stallings

Signals /
bits

Frame MAC address

Packet
IP IP address

Segment TCP, UDP

90% of the time your code will

work in the application layer

and only need to talk to the

transport layer.

Data

Encapsulation / Decapsulation

6

Source: Data and Computer Communications, 8th edition, By: William Stallings

Example

Most network application can be divided into two programs:

8

client and server

Examples?

request

response

Client Server

Multiple layers of network protocols are typically involved in client-

server communication

9

Client and server on the same Ethernet (using TCP)

Source: Textbook 2

Protocol?

Multiple layers of network protocols are typically involved in client-

server communication

10

Client and server on different LANs connecting through a WAN

Source: Textbook 2

The sockets programming interfaces are interfaces from the upper

layers (the “application”) into the transport layer

11

Sockets

Handle all the details of

the application, and

know little about the

communication details

User

Process

Handle all the details of

communication, and

know little about the

application

OS

Kernel

Why do sockets provide the

interface from the upper three

layers of the OSI model into the

transport layer?

IP Address + Port Number = Socket

12

Port numbers are from 0 to 65535. The first 1024 ports are

reserved for use by certain privileged services:

Source: https://study-ccna.com/ports-explained/

Five Classes of IPv4

13

Source: https://medium.com/networks-security/tricks-to-remember-five-classes-of-ipv4-484c191678fb

Subnet?

14

Source: https://howtocheckversion.com/how-to-determine-if-you-are-on-ipv4-or-ipv6/

Homework 1

15

➢ What is the IETF? Where and when will the next IETF meeting take place?

➢ Before a new protocol can become an Internet standard, it will go through different steps. Briefly define, and

then order the following types of document in the correct time line: "draft standard (RFC)", "Internet

standard (RFC/STD)", "Internet draft (I-D)", "proposed standard (RFC)".

➢ What is the best place to search for an RFC? For an Internet draft?

➢ You are tasked to implement a server supporting RFC 1531. What kind of server you will implement?

➢ You are looking for RFCs with "BGP" in the title. (BGP – Border Gateway Protocol). How many RFCs do you

find? Is anyone of them an Internet Standard (STD)?

➢ What IETF means by “an RFC obsoletes another RFC”. Give an example.

➢ The IETF standards are developed in different Working Groups. Find the home page for an IETF Working

Group which deals with a topic you find interesting. Then perform the following tasks:

➢ State which IETF Working Group you picked!

➢ Pick one of the RFCs or IETF drafts published by this Working Group. State the title of the document.

➢ RFCs and IETF drafts usually have an introduction section. Read it! Then write a short summary (a

few lines) of the topic of this standards document.

Recommended Reading Material and Learning Resources

16

➢ Rick Graziani, slides of networking courses (Cabrillo College)

➢ Sam Hsu, slides of computer network programming course (Florida Atlantic University)

➢ Textbook 2: Chapter 1

17

Questions?

Network Programming

2) Introduction to Python

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
2 / B – Rationale: Python is a powerful, versatile programming
language commonly used in network programming. Its readability
and extensive libraries make it ideal for developing and testing
network applications.
2 / C – Central Idea:

1. Introduction to Python syntax and structure
2. Variables, types, and referencing
3. Sequence types: lists, tuples, strings
4. Functions, conditionals, loops

2 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Write basic Python programs using correct syntax.

2. Use variables, lists, dictionaries, and functions appropriately.

3. Implement logical conditions and loops to control program flow.

4. Understand the difference between mutable and immutable types.

2

Python

➢ Open source

➢ General-purpose

➢ Object Oriented, Procedural, Functional

➢ Easy to interface with C, Java, Fortran (and C++)

➢ Versions: 2.5.x / 2.6.x / 3.x

➢ http://www.python.org

➢ http://www.python.org/doc/

Why Python?

http://www.python.org/
http://www.python.org/doc/

3

4

HS1

python test.py

Comments

Operators

Assignment (reference)

Create variables (names)

Variable types

Print

Blocks

Garbage collection

Access non-existing name

Slide 4

HS1 Hassan Almazini;

10.02.2024

Naming

➢ Case-sensitive

➢ Letters, numbers, underscore

➢ Don't start with a number

➢ Don't use the reserved words

and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for,

from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while

Referencing

>>> y = 2
➢ an integer 2 is created and stored in memory

➢ a name y is created

➢ a reference to the memory location storing 2 is assigned to y
➢ The value of y is 2 → y refers to the integer 2

>>> x = y

makes x reference the object y references

>>> y = y + 2

>>> x

2

>>> y

4

integer, float, string,

and tuple are

“immutable”

Referencing (Cont.)

>>> x = [1, 2, 3] # list

>>> y = x

>>> x.append(4)

>>> x
[1, 2, 3, 4]

>>> y
[1, 2, 3, 4]

>>> x.insert(2,'i')
>>> x
[1, 2, 'i', 3, 4]

lists, dictionaries,

user-defined types

are “mutable”

Sequence Types

Tuples
>>> T = ('a', 4, 5.6)

>>> T [1]

4

>>> T [1] = 5

Lists
>>> L = ['a', 4, 5.6]

>>> L [1]

4

>>> L [1] = 2

>>> L # points to the same memory reference

['a', 2, 5.6]

Strings
>>> S1 = “hello!”

>>> S1 [1]

e

Sequence Types (Cont.)

>>> T = ('a', 4, 5.6, 8 , 9)

>>> T [-2]

8

>>> T [1 : 3]

4, 5.6

>>> T [1 : -1]

4, 5.6, 8

>>> T [: -1]

'a', 4, 5.6, 8

>>> T [2:]

5.6, 8, 9

>>> T [:]

'a', 4, 5.6, 8 , 9

Sequence Types (Cont.)

>>> list2 = list1

2 names refer to 1 ref

Changing one affects both

>>> list2 = list1[:]

2 independent copies, 2 references

“in” Operator

>>> T = (1, 2, 3, 4)

>>> S = “hello”

>>> 1 in T

True

>>> 5 in T

False

>>> 'e' in S

True

>>> 'el' in S

True

>>> 'eo' in S

False

Concatenation

>>> L1 = [1, 2, 3, 4]

>>> S1 = “hello”

>>> S2 = “world”

>>> L1 + [4, 5, 6, 7]

[1, 2, 3, 4, 4, 5, 6, 7]

>>> S1 + “ ” + S2 + “!”

“hello world!”

“*” Operator

>>> 3 * 2

6

>>> [4, 5, 6, 7] * 3

[4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7]

>>> (5, 6, 7) * 3

(5, 6, 7, 5, 6, 7, 5, 6, 7)

>>> S2 = “world”

>>> S2 * 2

“worldworld”

Other Operators

>>> L = [1, 2, 3, 3, 3]

>>> T = (1, 2, 3, 3, 3)

>>> T.index(3)

2

same for L

>>> T.count(3)

3

same for L

>>> L.remove(3)

>>> L

[1, 2, 3, 3]

>>> T.remove(3)

Other Operators

>>> L = [1, 2, 3, 3, 3]

>>> T = (1, 2, 3, 3, 3)

>>> L.reverse()

>>> L

[3, 3, 3, 2, 1]

>>> L.sort()

>>> L

[1, 2, 3, 3, 3]

>>> T.reverse()

>>> T.sort()

Lists & Tuples

➢ Tuples are immutable, faster and less powerful than lists

➢ Conversion

>>> L = list(T)

>>> T = tuple(L)

Dictionaries

➢ Store a mapping between a set of keys and a set of values
➢ Keys: any immutable type

➢ Values: any type

➢ A single dictionary can hold values of different types

➢ Operations: define, modify, view, lookup, and delete the key-value pairs in the dictionary

Dictionaries (Cont.)

>>> d = {'name' : 'Ahmad', 'password' : 'abcd'}

>>> d['password']

'abcd'

>>> d['Ahmad']

>>> d['password'] = 'xyz' # mutable

>>> d

{'name' : 'Ahmad', 'password' : 'xyz'}

>>> d['id'] = 55

>>> d

{'name' : 'Ahmad', 'password' : 'xyz', 'id' : 55}

Dictionaries (Cont.)

>>> d

{'name' : 'Ahmad', 'password' : 'xyz', 'id' : 55}

>>> d.keys()

['name' , 'password' , 'id'] # list of keys

>>> d.values()

['Ahmad' , 'xyz' , 55] # list of values

>>> d.items()

[('name' , 'Ahmad') , ('password' , 'xyz') , ('id' , 55)]

>>> del d['id']

>>> d

{'name' : 'Ahmad' , 'password' : 'xyz'}

>>> d.clear()

>>> d

{}

Functions

def add (a, b):
return a + b

def change (a, b):
a = 2
b[1] = 3

Functions (Cont.)

def myfunc (a, b, c = 10, d = 20):
print a , print b, print c, print d

>>> myfunc (3, 4)
3 4 10 20

>>> myfunc (1, 2, 3, 4)
1, 2, 3, 4

Functions (Cont.)

➢ No function overloading

➢ Two different functions can’t have the same name, even if they have different arguments.

➢ Functions can:

➢ be arguments to function

➢ return values of functions

➢ be assigned to variables

➢ be parts of tuples, lists, etc.

“if” Statement

if a == 4:
print “a equals 4”

elif a == 3:
print “a equals 3”

else:
print “neither 4 nor 3!”

print “this is not part of if”

“for” Statement

for a in range (5):
print a

print “this is not part of the loop”

print 0 to 4

for a in range (1, 5):
print a

print 1 to 4

for a in range (1, 10):
if x == 4:

continue
if x == 8:

break
print a

print 1, 2, 3, 5, 6, 7

“while” Statement

a = 5

while a < 10:
print (a)
a+=2

Recommended Reading Material and Learning Resources

http://tdc-www.harvard.edu/Python.pdf

http://tdc-www.harvard.edu/Python.pdf

Questions?

Network Programming

3) Python Sockets Programming – UDP

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
3 / B – Rationale: Understanding how to send and receive data
using the UDP protocol in Python is essential for building efficient,
low-latency applications like streaming, gaming, or real-time
communication systems.
3 / C – Central Idea:

1. Introduction to UDP protocol
2. Python socket programming basics
3. Writing simple UDP server and client
4. Security issues and mitigations

3 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Describe the characteristics and behavior of the UDP protocol.

2. Create a simple UDP server and client in Python.

3. Implement message exchange using socket APIs.

4. Identify potential security vulnerabilities in UDP communication.

c

2

The existence of both UDP and TCP

sockets allows to choose the

appropriate protocol based on the

specific needs of the applications

Different

Needs

Different

Network

Conditions

Different

Comm.

Models

User Datagram Protocol (UDP) is a connectionless transport layer

3

protocol in the Internet Protocol Suite

➢ Provides a lightweight, best-effort delivery mechanism

➢ UDP has minimal overhead

➢ No handshaking, congestion control, acknowledgment

mechanisms, error checking or retransmission

➢ (Ordered) delivery is not guaranteed

➢ Operates by sending datagrams between devices without

establishing a connection (i.e., connectionless)

➢ Faster but less reliable than TCP

➢ Often used for time-sensitive applications where

➢ Low latency and speed are prioritized over guaranteed

delivery

➢ Occasional packet loss is acceptable

The checksum in UDP helps to detect errors, but doesn't provide

4

mechanisms for recovering lost packets or ensuring their correct order

Source: https://voip-sip-sdk.com/p_7231-user-datagram-protocol.html

UDP server that listens on port 9000 for incoming messages from clients

5

Python socket module

provides access to the

socket interface

Creates a socket object

using IPv4 (AF_INET) and

UDP (SOCK_DGRAM)

protocols

Max number of bytes the

server can receive in one

datagram

&

the port number on which

the server will listen for

incoming datagrams

Binds the socket to the

localhost (127.0.0.1) and

the specified port number

(9000)

Receives data from a

client and stores it in the

data variable & retrieves

the address of the client

that sent the data

Sends the response

message back to the client

at the address from which

the data was received

UDP client that sends a message containing the current time to a server

6

listening on port 9000 at localhost, then receives a response & prints it

Imports the datetime class

from the datetime module

Run the server, follow with the client (multiple times), and then the

7

server again

Run another copy of the server

8

Solution: Run the script with

9

different port numbers

python server2.py 8000

python server2.py 8001

…

Three Binding Options

10

➢ '127.0.0.1': the server will listen to packets from other programs running on the same machine only

➢ ' ' : the server will listen to packets arriving via any of its network interfaces

➢ Some IP (e.g. '193.10.0.22’):

➢ One of the machine’s IP interfaces

➢ The server will listen only for packets destined for the specified IP

The client code doesn’t check the source address of the datagram it

11

receives to verify that it is actually a reply from the server!

The client is vulnerable to anyone who can address a UDP packet to it

12

➢ Freeze the server (ctrl + z) (note: type “fg” to unfreeze)

➢ Run the client

➢ Fake Server:

➢ The client output now:

Solution 1: Add a check to ensure that the response comes from a

13

trusted source

Solution 2: Use “connect()” to establish a connection with the server,

14

“send()” to send data and “recv()” to receive responses

➢ When connect() is used, the socket is

associated with a specific remote

address and port

➢ Only packets from that address are

accepted

➢ Implicitly filtering out responses

from unauthorized sources

➢ Simple and easy to use

➢ It may be not flexible

➢ If the client needs to communicate

with multiple servers

➢ If the server’s address is dynamic

Solution 3: Include a unique ID in the request that gets repeated in the

reply, and accept the reply if it contains the same ID

15

➢ Useful only when the attacker cannot see the requests!

➢ Ensure that the IDs are truly random and unpredictable

➢ Avoid using predictable sequences or algorithms that can be easily guessed

➢ Longer IDs, e.g., 128 bits, generally provide higher security against brute-force attacks

➢ Ensure that the IDs are unique (collisions could lead to confusion or security vulnerabilities)

➢ Consider including a validity period or expiration time with the IDs

➢ Consider hashing the IDs before sending them, and incorporating authentication mechanisms

Solution 3: Include a unique ID in the request that gets repeated in the

reply, and accept the reply if it contains the same ID

16

Man-In-The-Middle Attack (MITM)

17

Source: https://securebox.comodo.com/ssl-sniffing/man-in-the-middle-attack

UDP is unreliable:

18

Packets might be lost; server might stop

➢ Lucky Client:

➢ The Server:

Unlucky (Blocking) Client:

19

Applications that use UDP typically

handle reliability and ordering at a

higher level, by implementing their

own protocols on top of UDP

A “real” UDP client that can deal with the fact that packets might be lost

20

➢ The client has to perform its request inside a loop

➢ The client doesn’t know the reason:

➢ The reply is taking a long time to come back,

but it will soon arrive

➢ The reply will never arrive because it, or the

request, was lost

➢ The server is down

➢ The client has to choose a schedule on which it

will send duplicate requests if it waits a

reasonable period without getting a response

➢ Solution: Exponential Backoff

Broadcasting: Sending datagrams to an entire subnet to which your

21

machine is attached

22

Fragmentation refers to the process of breaking down large packets of

data into smaller fragments

23

➢ This is necessary when the size of the data packet

exceeds the maximum size allowed by a network’s

Maximum Transmission Unit (MTU)

➢ MTU is the size of the largest PDU that all the

devices between two hosts support

➢ Examples:

➢ MTU = 1500 bytes in Ethernet v2

➢ IEEE 802.11 (Wi-Fi): Typically >= 2304 bytes

➢ Fragmentation can introduce overhead and

potentially impact network performance, so it’s

generally more efficient to avoid it when possible
Source: https://electronicspost.com/ip-datagram-fragmentation-

with-example/

Fragmentation refers to the process of breaking down large packets of

data into smaller fragments

24

➢ In the provided scripts, the MAX_BYTES constant is set to 65535, which represents the maximum size

of data that the client can receive in a single UDP datagram

➢ This value is the theoretical maximum size for UDP datagrams

➢ In practice, the actual size may be limited by the MTU of the network

➢ It's essential to consider the MTU of the network when determining the appropriate maximum size

for UDP datagrams in real-world applications

➢ If a UDP datagram exceeds the MTU size of the network, it will be fragmented into smaller packets

during transmission, potentially leading to inefficiencies and performance issues

➢ What if you don't have prior knowledge of the networks and paths across which packets will travel?

Recap

25

➢ UDP lets apps send individual packets across an IP network

➢ A client program sends a packet to a server

➢ The server then replies using the return address built into every UDP packet

➢ The network stack gives access to UDP through a socket, which is a communications endpoint that can

sit at an IP address and UDP port number (IP address + port number = socket address)

➢ Python offers these primitive network operations through the built-in socket module

➢ The server needs to bind() to an address and port before it can receive incoming packets

➢ Client UDP programs can just start sending, and the OS will give them a port number automatically

Recap (Cont.)

26

➢ UDP is unreliable

➢ Packets can be dropped, e.g., because of a network glitch or busy network segment

➢ Clients have to compensate for this by retransmitting a request until they receive a reply

➢ To prevent making a busy network even worse, clients should use exponential backoff, and they

should make their initial wait time longer if they find that round-trips to the server are taking long

➢ Request IDs are crucial to combat the problem of reply duplication

➢ If randomly chosen, request IDs can also help protect against naive spoofing attacks

➢ connect() limits replies received so that they can come only from the specified server

➢ The broadcast option lets you send packets to every host on the subnet

Experiment with crafting more advanced applications using the

27

concepts we have covered!

➢ Develop a simple command-line chat application over UDP

➢ Each user’s application will act both as a client and a server

➢ Each user have a command-line interface where he can type messages to send to other users

(individual and broadcast) and view incoming messages

➢ Include features such a:

➢ User authentication

➢ Message encryption

➢ Message history

28

“By the time you have a UDP protocol
kind of working for your application, you

have probably just reinvented TCP badly!”

Source

29

30

Questions?

Network Programming

4) Python Sockets Programming – TCP

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
4 / B – Rationale: TCP provides reliable, ordered, and error-
checked delivery of a stream of bytes between applications. This
unit teaches students how to implement TCP-based applications
using Python sockets.
4 / C – Central Idea:

1. TCP fundamentals and handshake
2. Writing TCP server and client
3. Handling send and receive operations
4. Understanding deadlock and stream handling

4 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Understand TCP connection setup, data flow, and teardown.

2. Build reliable TCP server-client applications using Python.

3. Use `send()` and `recv()` correctly for robust data exchange.

4. Prevent deadlocks and implement proper stream termination.

2

The existence of both UDP and TCP

sockets allows to choose the

appropriate protocol based on the

specific needs of the applications

Different

Needs

Different

Network

Conditions

Different

Comm.

Models

Transmission Control Protocol (TCP) is a connection-oriented transport

3

layer protocol in the Internet Protocol Suite

➢ Provides a reliable, ordered delivery mechanism

➢ TCP has more overhead compared to UDP due to its extensive features for reliable data delivery

➢ Handshaking

➢ Congestion control

➢ Acknowledgment mechanisms

➢ Error checking

➢ Retransmission

➢ Ordered delivery

➢ Operates by establishing a connection before data exchange (i.e., connection-oriented)

➢ Slower but more reliable than UDP

TCP is preferred for applications where data integrity and reliability are

4

crucial (incl. protocols that carry documents and files)

TCP Basics (RFC 793 from 1981)

5

➢ Every TCP packet is given a sequence number

➢ Ordering & noticing missing packets (will be retransmitted)

➢ It is more secure when the initial sequence number is unpredictable (e.g. chosen randomly)

➢ TCP uses a counter that counts the number of bytes transmitted

➢ E.g., a packet of size 2048 bytes and sequence number 6000 will be followed by a packet with a

sequence number 8048

➢ TCP sends whole bursts of packets at a time before expecting a response

➢ TCP Window is the amount of data that a sender is willing to send at once

➢ Flow Control: The receiver (e.g., when its buffer is full) can regulate the window size (of the

sender) thus slow or pause the connection

➢ If TCP believes that packets are being dropped, it assumes that the network is becoming

congested and reduces how much data it sends every second

Establishing a TCP connection costs three packets (3-way handshake)

6

SYN: “I want to talk; here is the packet sequence
number I will be starting with.”

SYN-ACK: “Okay, here is the initial sequence
number I will be using in my direction.”

ACK: “Okay!”

Source: https://condor.depaul.edu/jkristof/technotes/tcp.html

Client Sever

Shutting a TCP connection down costs three to four packets

7

Source: https://condor.depaul.edu/jkristof/technotes/tcp.html

The TCP header ensures reliability by including essential control

8

information for managing data transmission

Source: https://voip-sip-sdk.com/p_7231-user-datagram-protocol.html

Simple TCP Server

9

➢ Passive (aka “listening”) sockets maintain the socket

name at which the server is ready to receive data

➢ No data send / receive

➢ (IP, port)

➢ Active (aka “connected”) sockets bound to one

remote conversation partner

➢ Send / receive

➢ (local_IP, local_port, remote_IP, remote_port)

Simple TCP Client

10

➢ “connect()” is essential in TCP clients!

➢ TCP connect() starts the 3-way handshake protocol

➢ It (unlike UDP connect()) may fail! (e.g., the remote host might not answer or refuse the connection)

11

Server

Clients

When performing a TCP send(), there are three scenarios

12

➢ The data is immediately accepted by the local system

➢ The network card is free

➢ Or the system has room to copy the data to a temporary outgoing

buffer so that send() immediately returns the length of data

➢ The program can continue running

➢ Block, pause the program until the data can be accepted

➢ The network card is busy and the outgoing data buffer is full

➢ Part of the data can be immediately queued and the rest waits

➢ The outgoing buffers are not completely full

➢ Part of the data can be immediately queued

➢ send() completes immediately, returns the number of bytes

accepted, and leaves the rest unprocessed

Put a send() call inside a loop

that will keep trying to send

the remaining data:

OR

use “sendall()”

When performing a TCP recv(), there are three scenarios

13

➢ No data is available

➢ recv() blocks, and the program pauses until data

arrives

➢ Plenty of data is available in the incoming buffer

➢ The app receives as many bytes as recv() is given

permission to deliver

➢ The buffer contains some waiting data less than

what recv() is given permission to deliver

➢ Immediately returns the available of data

There is no built-in:

recvall()

Make your own!

Modified TCP Server

14

Modified TCP Client

15

A more complicated “recvall()”

16

➢ Most real-world programs have to read (or process) part of the message before it can guess how much

more is coming!

➢ Example: HTTP Response

Try it!

recv()

17

➢ TCP is a streaming protocol

➢ A message has no boundaries

➢ recv() will return 0 only when the sender has closed the socket or explicitly called shutdown (SHUT_WR)

➢ Otherwise, it can return >= 1 (bytes)

➢ It will block until it has at least one byte to return

➢ Three ways to determine when a complete message is received:

➢ Use fixed length messages

➢ Send a fixed-length message containing the length, followed by a variable-length message

➢ After each message, send a unique / special termination message

Deadlock

18

➢ Two or more processes, sharing limited

resources, waiting each other forever due

to poor planning

➢ In other words, a set of blocked

processes each holding a resource and

waiting to acquire a resource held by

another process in the set

Deadlock may occur when using TCP!

19

➢ Resource: Buffers

➢ Store incoming packet until an app is

ready to read it

➢ Store outgoing packet till the network

hardware is ready to transmit it

➢ Limited in size!

➢ No problem if each app (client or server)

reads the other app’s complete message

before sending data in the other direction

➢ When it becomes problematic?

Modified TCP Server

20

Modified TCP Client

21

22

Server Client

23

Server

Clients

24

Server Server

Clients Clients

What happened?

25

➢ Why have both client and server been frozen?

➢ The server’s output buffer and the client’s input buffer became full

➢ TCP has used its window adjustment protocol to signal this fact and stop the socket from sending

additional data that would have to be discarded and later resent

➢ Why has this resulted in deadlock?

➢ The client sends each block with sendall()

➢ Then the server accepts it with recv(), processes it, and transmits its capitalized version back out with

another sendall() call

➢ And then what? Nothing!

➢ The client is never running any recv() calls (not while it still has data to send) so more and more data

backs up until the operating system buffers are not willing to accept any more

How are clients and servers supposed to process large amounts of data

26

without entering a deadlock?

➢ They can use socket options to turn off blocking so that calls like send() and recv() return immediately if

they find that they cannot send / receive any data yet

➢ Programs can use one of several techniques to process data from several inputs at a time, either by

splitting into separate threads or processes (one tasked with sending data into a socket, perhaps, and

another tasked with reading data back out)

➢ Or by running operating system calls such as select() or poll() that let them wait on busy outgoing and

incoming sockets at the same time and respond to whichever is ready

Recap

27

➢ The TCP-powered “stream” socket involves retransmitting lost packets, reordering the ones that arrive

out of sequence, and splitting large data streams into optimally sized packets

➢ A program that wants to accept incoming TCP connections needs to bind() to a port, run listen() on the

socket, and then go into a loop that runs accept() to receive a new socket for each incoming connection

➢ To connect to existing server ports, clients need only create a socket and connect() to an address

➢ Data is actually sent and received with send() and recv()

➢ Deadlock can occur if two peers are written such that the socket fills with more and more data that never

gets read

➢ Eventually, one direction will no longer be able to send() and might hang forever waiting

Experiment with crafting more advanced applications using the

28

concepts we have covered!

➢ Develop a simple command-line chat application over TCP

➢ Each user’s application will act both as a client and a server

➢ Each user have a command-line interface where he can type messages to send to other users

(individual and broadcast) and view incoming messages

➢ Include features such as:

➢ User authentication

➢ Message encryption

➢ Message history

➢ Online User List

➢ Offline Messaging

 ➢ File Transfer

Source

29

30

Questions?

Concurrency

1

➢ Servers usually need to handle multiple

clients

➢ The server must always be ready to accept

new connections

➢ A new connection makes a new socket

➢ Each client gets its own socket on server

➢ Each may be performing different tasks

Client

Client

Server

Client

Client

One solution is to handle each client by a separate thread

2

Single-

threaded

Multi-

threaded

Network Programming

5) HTTP Clients

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
5 / B – Rationale: HTTP is the foundation of data communication
for the World Wide Web. Understanding how HTTP clients work is
essential for building web-enabled applications and services.
5 / C – Central Idea:

1. HTTP request-response model
2. HTTP methods and status codes
3. Building HTTP clients in Python
4. Caching, cookies, and authentication

5 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Explain the HTTP client-server communication model.

2. Use HTTP request methods such as GET, POST, and PUT.

3. Interpret HTTP status codes and headers.

4. Build Python-based HTTP clients using urllib and Requests

libraries.

HTTP (Hypertext Transfer Protocol) is an application protocol for

4

distributed, collaborative, hypermedia information systems

➢ HTTP is the foundation of web communication, and knowledge of it is crucial for understanding

how web servers and clients interact

➢ HTTP operates as a request-response protocol in the client-server computing model

➢ Clients, typically web browsers, initiate requests for resources

➢ Servers, like web servers, process these requests and deliver the requested resources

HTTP Request

HTTP Response

Server

Client

While HTTP itself doesn't have a strict dependency on a specific

5

transport protocol, it traditionally and predominantly operates over TCP

HTTP programming opens up various possibilities for building web

6

applications and services

➢ Web Scraping Tools: Build tools to extract data from websites for analysis or storage

➢ Enable tasks like monitoring competitor prices, gathering research data, or aggregating

information from multiple sources

➢ Web Servers: Develop custom web servers for hosting websites or web applications

➢ IoT Applications: Create web interfaces to interact with IoT devices or sensors

➢ Control, monitor, and remotely manage IoT devices

➢ Process sensor data, send commands to devices, and automate tasks based on predefined

conditions (e.g., adjusting temperature based on occupancy)

➢ Enhance security by integrating authentication mechanisms and encrypted channels

➢ Webhooks: Implement endpoints to receive and process HTTP requests triggered by external

events

A webhook is a mechanism for triggering actions in one system based

7

on events that occur in another system using HTTP requests

➢ It allows real-time communication between

different applications or services over the web

➢ Use Cases:

➢ Real-time Notifications: Deliver real-time

notifications to users or systems

➢ Data Synchronization: For instance, an e-

commerce platform can use webhooks to

notify inventory management systems

about product purchases or stock updates

➢ Integration: For instance, a payment

gateway can use webhooks to notify an e-

commerce platform about payments

https://www.wallarm.com/what/a-simple-explanation-of-what-a-webhook-is

https://botpenguin.com/glossary/webhooks

http://www.wallarm.com/what/a-simple-explanation-of-what-a-webhook-is

HTTP request methods define the action to be performed on a resource

8

➢ GET: Retrieves data from a server (e.g., fetching web pages, loading images)

➢ Parameters attached to the ULR; not to be used when dealing with sensitive data

➢ Requests can be cached

➢ HEAD: Same as GET but returns only HTTP headers (no body)

➢ POST: Submits data to a server (e.g., creating new posts, submitting login forms)

➢ The results of a POST are never cached

➢ PUT: Updates data on a server (e.g., updating user profiles, modifying product information)

➢ DELETE: Deletes data from a server (e.g., removing user accounts, deleting tasks)

➢ PATCH: Partially updates data on a server (e.g., updating specific fields in a user profile)

The “urllib” module allows clients to connect to HTTP(s) and FTP

9

➢ Returns a file-like object

➢ Read from it to get downloaded data

HTTP status codes indicate the outcome of a request

10

➢ 200 OK

➢ 301 Moved Permanently

➢ 304 Not Modified

➢ 307 Temporary Redirect

➢ 400 Bad Request

➢ 401 Unauthorized

➢ 403 Forbidden

➢ 404 Not Found

➢ 405 Method Not Allowed

➢ 500 Server Error

https://www.google.com/search?q=python

11

http://www.google.com/search?q=python

HTTP Response Headers

12

Improve Performance With Caching

13

Source: https://gnugat.github.io/2015/11/26/http-cache.html

How to make sure that the cached version of a web object is up-to-date?

14

One solution: Cache uses Conditional GET to check whether a cached object is stale

➢ First request from cache to origin server (due to a cache miss)

➢ Response from origin server to cache

GET index.html HTTP/1.0

User-Agent: Mozilla/4.0

Accept: text/html image/gif, image/jpeg

HTTP/1.0 200 OK

Date: … 04:29:01 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: 28 Feb 2024 01 : 10 : 42 GMT
Content-Type: text/html <CR/LF>

<data>

Conditional Get (Cont.)

15

➢ Conditional GET from cache to origin server (due to a cache hit)

➢ Response from origin server to cache

GET index.html HTTP/1.0

User-Agent: Mozilla/4.0

Accept: text/html image/gif, image/jpeg

If-modified-since: 16 Feb 2024 01 : 10 : 42

HTTP/1.0 304 Not Modified

Date: …

Server: Apache/1.3.12 (Unix) <CR/LF>

(empty entity body)

Setting expiration time is another solution

16

➢ Strong consistency and a freshness guaranty can be provided by using a conditional GET for every

cache hit

➢ However, this results in unnecessary delay and bandwidth consumption for requests yield not

modified

➢ Origin server can set an expiration time for web pages, which will be included in the entity header

of HTTP responses:

➢ A web page will not be modified before it expires

➢ There is no need for consistency checks (e.g. using conditional GET) ahead the expiration time

HTTP-Specific Considerations

17

➢ HTTP embeds cache-ability information in the HTTP header

➢ Cache control directives (e.g. Cache-Control: no-cache)

➢ HTTP defines rules indicating which HTTP responses are cacheable

➢ A response is cacheable only if request method and headers, and response status and headers all

indicate so

➢ E.g., responses to PUT, DELETE, OPTIONS are not cacheable

➢ E.g., response to POST is not cacheable unless indicated otherwise

➢ Some responses include object-specific information from the origin server that may preclude

caching of the message

 ➢ A well-behaved (but not all) Web cache must abide by the constraints imposed by HTTP!

Cache Control Directives in HTTP/1.1

18

➢ Cache-ability of an object can be controlled using the Cache-Control header in an HTTP request or

response

➢ Some of the directives in requests:

➢ no-cache: client forces freshness check with origin server

➢ no-store: do not store any portion of this request or response

➢ max-age=n: client is prepared to accept object without freshness check if age is < n seconds

➢ Some of the directives in responses:

➢ public: Object is cacheable by client and network caches

➢ private: Object can be cached only by the client

➢ no-cache: Object must not be cached

➢ max-age=n: Server imposes freshness check after n seconds.

Cache Control Directives:

19

Examples

➢ HTTP Request:

➢ HTTP Response:

GET index.html HTTP/1.0

User-Agent: Mozilla/4.0

Cache-Control : no-cache

Accept: text/html image/gif, image/jpeg

HTTP/1.0 200 OK

Date: 16 Feb 2024 04:29:01 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: 16 Feb 2024 01:10:42 GMT

Cache-Control: p r i va t e
Content-Type: text/html <CR/LF>

<data>

Authentication

20

➢ Determining whether a request really

comes from someone authorized to make it

➢ HTTP request often needs to carry built-in

proof as to the identity of the machine or

person making it

➢ The error code 401 Not Authorized is used

by servers that want to signal formally,

through HTTP, either that:

➢ They cannot authenticate your identity

➢ Or that the identity is fine but is not one

authorized to view this particular

resource.

Or prepare a Requests Session for authentication
to avoid having to repeat it with every request

Cookies

21

➢ Cookie is a message given (as part of a successful HTTP response) by a

Web server to a Web client (i.e. browser)

➢ Purposes:

➢ Identify users

➢ Prepare customized Web pages

➢ Save login information

➢ …

➢ Types: session & persistent

➢ Parameters: name, value, expiration date, domain (which the cookie

is valid for), need for a secure connection

Cookies

22

➢ Access a cookie contained in a response

➢ Send a cookie in a HTTP request

Experiment with crafting more advanced applications using the

23

concepts we have covered!

Develop an HTTP client in Python using libraries like Requests or urllib

➢ Send HTTP requests to web pages

➢ Extract data (text, links, or images) from the web pages using libraries like BeautifulSoup or Scrapy

➢ Create a simple interface, either command line or GUI, where users can input the URL of the page

they want to scrape

➢ Store the data in computer’s memory, a file, or a database

Source

24

25

Questions?

Network Programming

6) HTTP Servers

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
6 / B – Rationale: Building a server-side application is essential
for understanding how web systems handle incoming client
requests and generate responses. This unit introduces lightweight
HTTP server development using Python.
6 / C – Central Idea:

1. Introduction to HTTP servers
2. Static and dynamic content
3. CGI scripting in Python
4. Building and testing HTTP servers

6 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Understand the purpose and functionality of HTTP servers.

2. Serve static and dynamic content using Python.

3. Use Common Gateway Interface (CGI) for server-side scripting.

4. Develop, deploy, and test simple HTTP servers.

Python scripts used on the server to generate content (static &

2

dynamic), manage content, and send content back to clients

➢ Python has libraries that implement simple self-contained web servers

➢ Useful mainly for testing or where you don't want to install a “large” web server (e.g. Apache)

➢ Not high performance in general (but might be "good enough")

Run a HTTP client against the server

3

Index.html

Common Gateway Interface (CGI) is a common protocol used by web

4

servers to run server-side scripts to create dynamic content

cgi_test.html

5

register.py

6

7

Put it all together

8

HTTP Request: http://www.domain.com/content.html

(input parameters & action are included in the request)

HTTP Response:

content.html

Input
parameters

Output
(HTML)

5 2 4

Client Server

3 Action

(register.py)

1

http://www.domain.com/content.html

Source

9

Recommended Self-Reading

10

11

Questions?

Network Programming

7) Messaging and Message Queues

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
7 / B – Rationale: Scalability and decoupling are critical for large
distributed systems. Message queues help achieve these goals by
enabling asynchronous communication between services.
7 / C – Central Idea:

1. Asynchronous communication models
2. Message brokers and queues
3. RabbitMQ and AMQP
4. Fanout, direct, and topic exchanges

7 / D – Performance Objectives: After studying this unit, the
student will be able to:

1. Understand the concept of asynchronous task execution.

2. Use message queues to decouple services.

3. Implement task distribution using RabbitMQ.

4. Apply different exchange types for message routing.

Preface

➢ What would happen when many users are browsing a website / using an app?

➢ Load on the networks (traffic) and the provider

➢ Can be complex

➢ Geographically distributed clients

➢ Different types of clients

➢ Different types of requests (e.g. data retrieval, data submission, data editing, …)

➢ Different types of data (e.g. relational data, text, images, videos, …)

➢ How to keep

➢ the service available?

➢ high performance?

➢ operating the service in a cost-effective way?

Scalability is the ability to handle increased workload by repeatedly

applying a cost-effective strategy for extending the system’s capacity

➢ Vertical (scale up)

➢ Add resources to a single node in a system

➢ E.g. CPU, RAM, disk space, etc.

➢ Quickly reach a limit (technical or financial)

➢ Horizontal (scale out)

➢ Add more nodes to a system

➢ Allow distributing workload easily

➢ Need to manage large number of nodes

➢ Keys to build scalable systems:

➢ Horizontal scaling: allow scaling to be done quickly

https://medium.com/design-microservices-architecture-with-patterns/

Decoupling: let modules interact through simple and well defined interfaces

Basic Client-Server Model

2

➢ The server only performs work whenever there is a request

➢ The client waits for the response

Request

Response

Request

Response

Response

➢ Long waiting is not expected

➢ Not all tasks can be completed quickly

2

Client Server

1

Client Server

1

X+1 x

In many cases, it is necessary (or possible) to perform some tasks in the

background

➢ Asynchronous (or non-blocking) tasks

➢ Achieve decoupling by separating the server and other services

Request

Response

Submit
asynchronous tasks

Perform the tasks
(in the background)

Client Server

1

3

2

Worker

Worker

Worker

4

Examples of Asynchronous Tasks

➢ An app in which notifications will be sent to the user's friends after she/he uploads a file

➢ A real-time feed of constantly updating information

➢ An app that deliver messages when the destination comes online

➢ A social online network in which a user needs to quickly retrieve the list of a friend's mutual friends

Examples of Asynchronous Tasks

7

Switches
DB

Tasks
queue

Switch

TS DB

Every
5 min.

Start

coordinator

Get switches

List of switches

Write a

collection task

Create a collector

Get a task

Task
Get module

Temperature

Values

Write values

For each switch

Collector Coordinator

Asynchronous Tasks

8

➢ May have to be executed sequentially or concurrently

➢ May have different priorities

➢ May require different amount of resources

Some manager is needed to manage the tasks / messages between the server and the workers

Message Queues

9

Broker

Submit

tasks

Distribute / notify

tasks (messages)

Perform the tasks
(in the background)

App

Worker

MQ

Worker

Worker

Worker

Producer

Consumers

Message queues make systems more robust

10

➢ Free the request – response circle from heavy tasks

➢ Clients are shielded from failures of background tasks

➢ The broker resubmit tasks in case of failures

RabbitMQ is a commonly used application-layer message broker

11

software

➢ Speaks AMQP (Advanced Message Queuing Protocol)

➢ Accepts, stores, and forwards messages

➢ Defines how messages are routed and stored

➢ Defines how communications are done between clients and server

➢ Open source

➢ Easy to use

➢ Runs on all major operating systems & supported in Java, .NET, Ruby, Python, PHP, C, C++, Erlang, ...

Terminology

12

➢ Producer: app that sends a message

➢ Queue: a named messages store (infinite buffer)

➢ Consumer: app that waits to receive messages

hello

Example 1: Send and receive messages from a named queue

13

hello

send.py

Example 1: Send and receive messages from a named queue

14

hello

recv.py

Example 2: Distribute time-consuming tasks among multiple workers

15

C1

➢ Create more workers and make them consume

from the same queue

➢ Distribute messages to workers in a round-robin

fashion

➢ Idea: avoid doing a resource-intensive task

immediately and having to wait for it to

complete (instead: schedule the task to be done

later)

➢ A worker process running in the background will

pop the tasks and eventually execute the job.

task_queue

C2

Example 2: Distribute time-consuming tasks among multiple workers

16

new_task.py @ the consumer
side as well

1 = non-persist

2 = persistent

Example 2: Distribute time-consuming tasks among multiple workers

17

worker.py

Example 2: Distribute time-consuming tasks among multiple workers

18

$ python worker.py

$ python new_task.py first

[x] Sent ‘first’

$ python new_task.py second

[x] Sent ‘second’

$ python new_task.py third

[x] Sent ‘third’

$ python new_task.py fourth

[x] Sent ‘fourth’

$ python new_task.py fifth

[x] Sent ‘fifth’

$ python worker.py

PubSub

19

➢ Deliver a message to multiple consumers

➢ Producer sends messages to an exchange (not directly to a queue, i.e. not

through a default / nameless exchange: “”)

➢ Exchange

➢ Receives messages from producers

➢ & pushes them to (no, one / particular, or multiple) queues

➢ Exchange Types:

➢ Fanout – broadcasts the messages it receives to all queues it knows

➢ Direct

➢ Topic

binding

Fanout Exchange Example:

A Simple Logging System

20

➢ Every receiver gets a copy of each queued message

➢ Consumer 1: directs messages to a log file

➢ Consumer 2: shows them on a display

➢ Consumer N: ….

fanout

send

(P)

receive1
(C1)

receive2
(C2)

Fanout Exchange Example:

A Simple Logging System

21

send.py

Fanout Exchange Example:

A Simple Logging System

22

recv.py

$ python recv.py

$ python recv.py > test.log

$ python send.py

$ python send.py

$ python send.py

Routing allows to subscribe only to a subset of the messages

23

direct error

send

(P) error

warning

➢ Uses direct exchange

➢ Message goes to the queues whose binding key exactly matches the routing

key of the message

➢ Modified Logging System:

➢ Direct only critical error messages to Consumer 1 (to be saved in a log file)

➢ Direct all messages to Consumer 2 (to be displayed on the monitor)

receive1
(C1)

receive2
(C2)

Routing Example:

Modified Logging System

24

send.py

Routing Example:

Modified Logging System

25

 $ python recv.py error > test2.log

$ python recv.py error warning info

$ python send.py error 'test error!'

$ python send.py info 'test info!'

$ python send.py warning 'test warn!'

recv.py

Topics Exchange

26

➢ Direct exchanges cannot route based on multiple criteria

➢ What if an app (i.e. consumer) needs to subscribe not only based on content but also based on the

sender?

➢ Solution: Topic Exchange

➢ Listen to messages based on a pattern

➢ Routing_key: a list of words, delimited by dots (up to 255 bytes)

➢ Binding key: a list of words, delimited by dots (up to 255 bytes)

➢ * substitutes one word

➢ # substitutes zero or more words

Topics Exchange Example

27

interested

in brown clothes

send

(P)

topic

X

.brown.

..shirt

Turkey.#

receive1
(C1)

receive2

(C2)

➢ Routing key: <origin>.<colour>.<type>

interested

in Turkish clothes

& shirts

➢ Special binding keys:

➢ # = fanout (receives all messages regardless of the routing key)

Topics Exchange Example

28

➢ no # nor * = direct

Topics Exchange Example

29

Topics Exchange Example

30

send.py

Topics Exchange Example

31

recv.py

$ python

$ python

$ python

$ pyth

recv.py “#”

recv.py “kern.*“

recv.py "*.critical"

on recv.py "kern.*" "*.critical"

$ python send3.py "kern.c

ritical" "A critical kernel error"

Popular RabbitMQ Commands

32

$ sudo rabbitmqctl status

$ sudo rabbitmqctl list_queues

$ sudo rabbitmqctl list_exchanges

$ sudo rabbitmqctl list_bindings

Use Cases

33

Sources

34

➢ Slides (IERG 4080 Building Scalable Internet-based Services, Lecture 7)

➢ https://www.rabbitmq.com/

http://www.rabbitmq.com/

35

Questions?

Network Programming

8) Network Management

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
8 / B – Rationale: Efficient management of computer networks is essential for
ensuring reliability, performance, and security. This unit introduces the
foundational concepts and protocols of network management.
8 / C – Central Idea:

1. Overview of network management functions
2. FCAPS model
3. SNMP protocol and versions
4. Network monitoring and control

8 / D – Performance Objectives: After studying this unit, the student will be
able to:

1. Explain the purpose and scope of network management.

2. Apply the FCAPS model (Fault, Configuration, Accounting, Performance,

Security).

3. Understand SNMP operations and architecture.

4. Describe real-time network monitoring practices.

2

Introduction to Network Management

3

2 Analyze

Management

system

Act 1 Observe

Network / devices

(managed system)

3

Network management Refers to the activities and tools that pertain to

4

the operation and administration of networked systems

➢ A general concept that employs the use of various tools, techniques, and systems to aid human

beings in managing various devices, systems, or networks

➢ Involves five tasks (FCAPS):

➢ Fault management

➢ Configuration management

➢ Accounting management & user administration

➢ Performance management

➢ Security management

Fault Management

5

➢ Goal: detect, log, and notify users of systems or networks

of problems

➢ In many environments, downtime of any kind is not

acceptable

➢ Fault resolution steps:

➢ Isolate the problem by using tools to determine

symptoms

➢ Resolve the problem

➢ Record the process that was used to detect and

resolve the problem

Configuration Management

6

➢ Goal: monitor network and system configuration

information so that the effects on network operation of

various versions of hardware and software elements can

be tracked and managed

➢ Configuration parameters include:

➢ Version of operating system, firmware, etc.

➢ Number of network interfaces and speeds, etc.

➢ Number of hard disks

➢ Number of CPUs

➢ Amount of RAM

➢ ...

Accounting Management

7

➢ Goal: ensure that computing and network resources are

used fairly by all groups or individuals who access them

➢ Through this form of regulation, network problems can

be minimized since resources are divided based on

capacities

Performance Management

8

➢ Goal: measure and report on various aspects of network

or system performance

➢ Steps:

➢ Gather performance data

➢ Define baseline levels based on analysis of the data

gathered

➢ Define performance thresholds

➢ When these thresholds are exceeded, it is

indicative of a problem that requires attention

Security Management

9

➢ Goals:

➢ Control access to network resources

➢ Help to detect and prevent attacks

➢ Tools:

➢ Firewalls

➢ Intrusion Detection Systems (IDSs)

➢ Intrusion Prevention Systems (IPSs)

➢ Anti-virus systems

➢ Policy management and enforcement systems

10

Simple Network Management Protocol

(SNMP)

A set of operations that gives administrators the ability to monitor and

11

change the state of some SNMP-enabled devices (and applications)

SNMP Versions

12

➢ SNMPv1

➢ RFC 1157

➢ Still the primary SNMP implementation that many vendors support

➢ Security: based on communities (i.e. passwords)

➢ SNMPv2

➢ RFC 3416, RFC 3417, and RFC 3418

➢ Technically called SNMPv2c

➢ SNMPv3

➢ RFC 3410, RFC 3411, RFC 3412, RFC 3413, RFC 3414, RFC 3415, RFC 3416, RFC 3417, and RFC 2576

➢ Adds support for strong authentication and private communication between managed entities

➢ Not widely supported

SNMP Managers

13

➢ Aka. Network Management Stations (NMSs)

➢ A server running software system that can handle management tasks for a network

➢ Responsible for polling and receiving traps from agents in the network

➢ Poll: querying an agent for some piece of information

➢ Trap: a way for the agent to tell the NMS that something has happened

➢ sent asynchronously, not in response to queries from the NMS

➢ Also is responsible for performing an action based upon the information (i.e. traps) it receives from

agents

SNMP Agents

14

➢ A piece of software that runs on the managed network devices.

➢ It can be a separate program, or it can be incorporated into the OS

➢ Today, most IP devices come with a built-in SNMP agent

➢ The agent provides management information to the NMS by keeping track of various operational

aspects of the device

➢ When the agent notices that something bad has happened, it can send a trap to the NMS

➢ Some devices will send a corresponding “all clear” trap when there is a transition from a bad state to a

good state

15

Structure of Management Information (SMI)

16

➢ A way to define managed objects and their behavior

➢ Each agent has a list of the objects that it tracks

➢ This list collectively defines the information the NMS can use to determine the overall health of

the device on which the agent resides

Management Information Base (MIB)

17

➢ A database of managed objects that the agent tracks

➢ Any sort of status or statistical information that can be accessed by the NMS is defined in a MIB

➢ The SMI provides a way to define managed objects while the MIB is the definition (using the SMI

syntax) of the objects themselves

➢ An agent may implement many MIBs

➢ All agents implement a particular MIB called MIB-II (RFC 1213)

➢ Defines:

➢ interface statistics (speed, MTU, octets sent, octets received, etc.)

➢ system info (location, contact, etc.)

 ➢ other info (vendor-defined and/or administrator-defined)

Remote Monitoring (RMON)

18

➢ RMONv1 (or RMON): RFC 2819

➢ A MIB provides the NMS with packet-level statistics about an entire LAN or WAN

➢ RMONv2: RFC 2021

➢ Builds on RMONv1: provides network- and application-level statistics

➢ Place an RMON probe on every / some network segment(s)

➢ The RMON MIB allows RMON probes to run in an off-line mode

➢ Gather statistics about the network without requiring an NMS to query it constantly

➢ Later on, the NMS can query the probe for statistics

➢ Probes can set thresholds for various error conditions (when a threshold is crossed, alert the NMS

 with an SNMP trap)

19

SNMP (mostly v1) Details

SNMP is more than a protocol; it is a management framework, including

20

architecture information model management operations

➢ In this part, we refer to SNMPv1, unless stated otherwise

➢ Virtually all networked devices support it

➢ SNMP uses UDP for transporting messages between NMSs and agents

➢ Why UDP?

➢ Default ports: 161 for receiving requests 162 for receiving traps

➢ The NMS sends a UDP request to an agent and waits for a response

➢ Configurable timeout retransmit if …

➢ Number of retransmissions is also configurable

SNMP Communities

21

➢ Community string = password

➢ Used to establish trust between NMSs and agents

➢ Manager needs to know community in order for access to succeed

➢ Agent is configured with three access modes

➢ Read-only (default: “public”)

➢ Read-w rite (sometimes default is “private” or no default)

➢ Trap

➢ MIB View: subset (or all) of objects in MIB

➢ Possible that different communities may have different views

➢ MIB object has ACCESS defined with it

Management Information

22

➢ Management Information is modeled as managed objects (MOs) and relationships among them

➢ MOs: operational parameters of SNMP-capable devices

➢ A Management Information Bases (MIB) is a collection of objects, grouped for a specific

management purpose

➢ All objects are organized in the global MIB tree

➢ Each MIB represents a sub tree of this global MIB tree

➢ The leaf objects of the tree contain object instances with the state and control variables of the

managed system

➢ MIB-II is the most popular MIB; it is implemented in most SNMP-managed devices

➢ Device manufacturers often define their own device-specific MIBs

Structure of Information Management (SIM)

23

➢ SMI defines how MOs are named and specifies their associated data types

➢ Two versions: v1 (RFC 1155) & v2 (RFC 2578)

➢ These definitions are written in the language ASN.1 (Abstract Syntax Notation 1)

➢ Has three attributes:

➢ Name (or OID): uniquely defines a MO

➢ Data type and syntax

➢ Encoding: a single instance of a managed object is encoded into a string of octets using the

Basic Encoding Rules (BER)

➢ BER defines how the objects are encoded and decoded

Data Types

24

➢ The SYNTAX attribute provides definitions of managed objects through a subset of ASN.1

➢ SMIv1 Data Types:

➢ Scalar Types: INTEGER, OCTET, STRING, Counter, OBJECT IDENTIFIER, IpAddress, Gauge,

TimeTicks, …

➢ Table:

➢ Table of scalar objects (seq of records)

➢ E.g., ARP tables, routing tables, ...

➢ Table has three parts:

➢ Table name

➢ Row name

 ➢ Column object name

Multiple Instances of MOs

25

➢ Example: 3 switches of the same version have identical identifier (i.e. same object type)

➢ They differ in actual values stored: various instances; identified by different IP addresses

Instance 1

Instance 1

Instance 1

Encoding:

BER

Syntax:

ASN.1

Name

(OID)

Type

Object

Naming OIDs

26

Upper part of the global MIB tree

Naming OIDs

27

➢ IANA manages the private enterprise number assignments for individuals, institutions,

organizations, companies, etc.

➢ http://www.iana.org/assignments/enterprise-numbers

➢ Example: Cisco Systems private enterprise number is 9

➢ The base OID for its private object space:

➢ iso.org.dod.internet.private.enterprises.cisco, or

➢ 1.3.6.1.4.1.9

➢ How do we convert from OIDs to Labels (and vice versa)?

➢ Use MIBs files!

http://www.iana.org/assignments/enterprise-numbers

28

MIB Example

Object type of parent

Numeric (sub)identifier

Data type

Naming OIDs

29

➢ The OID of an instance of a scalar object type with OID X is denoted by X.0

➢ The OID of a table element in table X is denoted by X.1.column.(i1).(i2)…..(in), where:

➢ X is the identifier of the table object type

➢ column is the column number

➢ (i1) … (in) is the table index

Representing a Table Object on the MIB Tree

30

MIBs also …

31

➢ Make it possible to interpret a returned value from an agent

➢ For example, the status for a fan could be 1, 2, 3, 4, 5, 6

➢ What does it mean?

MIB Example

32

SNMP Messages

33

➢ GET X

➢ Query for a value of leaf object with OID X

➢ Manager agent

➢ GET-NEXT Y

➢ Get value of leaf object following Y

➢ Allows to list the elements of a table or of the leaf objects of a MIB

➢ Manager agent

➢ RESPONSE

➢ Response to GET/SET, ACK to set, or error

➢ Agent manager

SNMP Messages

34

➢ SET

➢ Set a value, or perform action

➢ Manager agent

➢ TRAP

➢ Alert from equipment (e.g. line down, temperature above threshold, ...)

➢ Agent manager

Accessing MIB Elements

35

➢ Random: supply the exact OID, and get/set value

➢ Tricky if table entry

➢ Simple otherwise

➢ Sequential: done on basis of lexicographical ordering of OIDs

➢ An OID is a series of small integers from left to right (x1, x2, ...)

➢ Visit the root and then traverse subtrees from left to right

➢ Depth-first search of the tree

Ordering MIB Elements

36

Commands for Querying Agents

37

➢ snmpget

➢ snmpwalk

➢ snmpstatus

➢ snmptable

Syntax:

snmp XXX -c community -v1 host [oid]

snmp XXX -c community -v2c host [oid]

Examples

38

➢ snmpstatus -c NetManage -v2c 10.10.0.254

➢ snmpget -c NetManage -v2c 10.10.0.254 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifNumber.0

➢ snmpwalk -c NetManage -v2c 10.10.0.254 ifDescr

39

snmpget -c public -v1 solarisbox .1.3.6.1.2.1.1.1.0

snmpget -c public -v1 solarisbox \

.iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Traps

40

➢ Events / alerts asynchronously sent by agent to manager

➢ Most important type is linkDown (interface crashed)

➢ Types:

➢ coldStart(0) - unexpected restart or crash

➢ warmStart(1) - soft reboot

➢ linkDown(2)

➢ linkUp(3)

➢ authenticationFailure(4)

➢ egpNeighborLoss(5)

➢ enterpriseSpecific(6)

Strengths of SNMPv1

41

➢ Simplicity

➢ Simple data model

➢ Only four operations

➢ Simple interaction model

➢ Connectionless transport

➢ Low complexity on agent side

➢ Ubiquity

➢ (Almost) every networked device has an SNMP agent

➢ Well tested

Limitations of SNMPv1

42

➢ Limited Expressiveness

➢ Management commands have to be expressed as reading and writing single (scalar) object

values

➢ Limited Scalability: In large networks, the polling model of interaction can lead to

➢ High load on management station

➢ High management traffic

➢ Long execution time

➢ Weak Security Model

➢ Authentication is based on unencrypted password (community string)

➢ Consequently, SNMP is primarily used for monitoring, even today

SNMPv
43

43

➢ Inform Request

➢ Multiple managers coordination Locking mechanisms prevent multiple managers from writing

at the same time

➢ Get-bulk X m

➢ Returns the OIDs and values of the m lexicographical (leaf) successors to the object with OID X

➢ This allows, for instance, to read a table by sending a single request

➢ Confirmation options for Traps

➢ Agents can ensure that trap was received correctly

SNMPv
44

44

➢ Security update of SNMPv2

➢ Authentication: Message authentication code with a shared secret key

➢ Privacy: Encryption using a shared secret key

➢ Access Control: Each manager can have a different set of read/write permission for various

components of MIB

45

SNMP Commands & More

SNMP Daemon and Client

46

➢ SNMP Manager

➢ sudo apt-get update

➢ sudo apt-get install snmp

➢ sudo apt-get install snmp-mibs-downloader (a package contains some proprietary information

about standard MIBs that allow us to access most of the MIB tree by name)

➢ sudo nano /etc/snmp/snmp.conf #mibs (to allow the manager to import the MIB files)

➢ SNMP Agent (another machine)

➢ sudo apt-get update

➢ sudo apt-get install snmpd

➢ sudo nano /etc/snmp/snmpd.conf

Naming OIDs

47

➢ The OID of an instance of a scalar object type with OID X is denoted by X.0

➢ The OID of a table element in table X is denoted by X.1.column.(i1).(i2)…..(in), where:

➢ X is the identifier of the table object type

➢ column is the column number

➢ (i1) … (in) is the table index

Example:

48

sysName

➢ Under ”system” (OID: 1.3.6.1.2.1.1)

➢ SysName’s suffix: 5

➢ SysName's OID: 1.3.6.1.2.1.1.5.0

➢ The final 0 represents a SNMP convention that indicates this is a scalar value and is not part of

a table

Siblings

49

➢ 1.3.6.1.2.1.1.1 – sysDescr

➢ 1.3.6.1.2.1.1.2 – sysObjectID

➢ 1.3.6.1.2.1.1.3 – sysUpTime

➢ 1.3.6.1.2.1.1.4 – sysContact

➢ 1.3.6.1.2.1.1.5 – sysName

➢ 1.3.6.1.2.1.1.6 – sysLocation

➢ 1.3.6.1.2.1.1.7 - sysServices

Example

50

➢ IfTable

➢ OID: 1.3.6.1.2.1.2.2

➢ IfEntry prefix: T = 1.3.6.1.2.1.2.2.1

Example (cont.)

51

➢ IfEntry prefix: T = 1.3.6.1.2.1.2.2.1

➢ The interface number is used as a single-level OID suffix

➢ The inOctets value of Eth0?

➢ OID: T.10.3 = 1.3.6.1.2.1.2.2.1.10.3

Example

52

➢ ipForward

➢ The nextHop column is assigned the number 7

➢ The nextHop for 10.38.0.0 thus has the OID T.7.10.38.0.0

Example

53

➢ tcpConnTable

➢ The OID suffix for the state of the first connection: .10.0.0.3.31895.147.126.1.209.993

➢ The state column is assigned the identifier 1, so this would all be appended to T.1

54

snmpgetnext()

55

➢ Allows a manager to walk through any subtree of the OID tree

➢ If the root of the subtree is prefix T, then the first call is snmpgetnext(T)

➢ Returns ⟨oid1,value1⟩

➢ The next call is snmpgetnext(oid1)

➢ Returns ⟨oid2,value2⟩

➢ The manager continues with the series of snmpgetnext calls until, finally, the subtree is exhausted

➢ The agent returns either an error or else (more likely) an ⟨oidN,valueN⟩ for which oidN is no

longer an extension of the original prefix

snmpgetnext()

56

➢ Example: start with the prefix 1.3.6.1.2.1.1 (the start of system)

➢ snmpgetnext(1.3.6.1.2.1.1) will return the pair: ⟨1.3.6.1.2.1.1.1.0, sysDescr_value⟩

➢ The OID 1.3.6.1.2.1.1.1.0 is the first leaf node below the interior node 1.3.6.1.2.1.1.

➢ snmpgetnext(1.3.6.1.2.1.1.1.0) will return ⟨1.3.6.1.2.1.1.2.0, sysObjectID_value⟩

snmpwalk()

57

➢ Takes an OID representing the root of a subtree, and returns everything in that subtree.

➢ Example:

➢ snmpwalk -v 1 -c tengwar localhost 1.3.6.1.2.1.2.2

➢ Note: 1.3.6.1.2.1.2.2 = ifTable.

snmpbulkget()

58

➢ SNMPv2 command

➢ An extension of snmpgetnext()

➢ A manager includes an integer N in its request and the agent then iterates the action of

snmpgetnext() N times

➢ Example: snmpbulkget -Cr2 -v2c -c tengwar localhost 1.3.6.1.2.1.2.2

➢ All N results (which can each represent an entire row) can then be returned in a single operation.

qtmib

59

➢ https://qtmib.sourceforge.net/

➢ SNMP MIB browser for Linux

platforms

➢ Allows the user to query any SNMP-

enabled device

➢ Implements SNMPv1 and SNMPv2c

➢ Supports a large number of MIBs

➢ Private MIBs can be installed

SNMP Simulator

60

➢ …

Homework #2

61

➢ …

Sources

62

➢ Essential SNMP: Chapters 1+2 + 3

➢ http://intronetworks.cs.luc.edu/current/html/netmgmt.html

➢ Slides of the Network Management Course (Prof. Rolf Stadler, KTH)

http://intronetworks.cs.luc.edu/current/html/netmgmt.html

63

Questions?

Network Programming

9) Switching and Routing Essentials

Dr. Hassan Almazini

A – Target Population: For students of Second Year
Technological Institute of Basra
Dep. Of Computer network and software technologies
9 / B – Rationale: Understanding how data is transferred within and between networks is
fundamental to network programming. This unit provides foundational knowledge on
switching and routing technologies that ensure efficient data delivery.
9 / C – Central Idea:

1. Introduction to network switching
2. Types of switches and switching methods
3. Basics of routing and types of routers
4. Routing tables and protocols

9 / D – Performance Objectives: After studying this unit, the student will be able to:
1. Define switching and explain its role in local area networks.

2. Differentiate between store-and-forward, cut-through, and fragment-free switching.

3. Explain how routers direct traffic between different networks.

4. Interpret routing tables and distinguish between static and dynamic routing protocols.

5. Describe real-time network monitoring practices.

2

Routers

Switches, Bridges

Hub, Repeaters

3

Switches

• Switches create a virtual circuit between two connected devices,
establishing a dedicated communication path between two devices.

• Switches on the network provide microsegmentation.

• This allows maximum utilization of the available bandwidth.

• A switch is also able to facilitate multiple, simultaneous virtual circuit
connections.

• Broadcast frames to all connected devices on the network.

4

Router

• A router is a Layer 3 device.

• Used to “route” traffic between two or more Layer 3 networks.

• Routers make decisions based on groups of network addresses, or
classes, as opposed to individual Layer 2 MAC addresses.

• Routers use routing tables to record the Layer 3 addresses of the
networks that are directly connected to the local interfaces and network
paths learned from neighboring routers.

• Routers are not compelled to forward broadcasts.

•
Sending and receiving Ethernet frames via a hub

5

 1111 ?

 2222

 5555

3333 1111

• So, what does a hub do
when it receives
information?

• Remember, a hub is
nothing more than a
multiport repeater.

•
Sending and receiving Ethernet frames via a hub

6

3333 4444

•
Sending and receiving Ethernet frames via a hub

7

Hub or

•
Sending and receiving Ethernet frames via a hub

8

 1111 2222
Nope

 5555
Nope

3333 1111

• The hub will flood it out all
ports except for the incoming
port.

• Hub is a layer 1 device.
• A hub does NOT look at layer

2 addresses, so it is fast in
transmitting data.

• Disadvantage with hubs: A
hub or series of hubs is a
single collision domain.

• A collision will occur if any two
or more devices transmit at
the same time within the
collision domain.

3333 For me! 4444 Nope

•
Sending and receiving Ethernet frames via a hub

9

 1111 2222

For me!

1111

• Another disadvantage with
hubs is that is take up
unnecessary bandwidth on

other links.

5555
Nope

Wasted
bandwidth

2222

•
Sending and receiving Ethernet frames via a hub

10

3333 Nope 4444 Nope

•

11

Sending and receiving Ethernet frames via a switch

10

•
Sending and receiving Ethernet frames via a switch

switch

1111 3333

Abbreviated

MAC

addresses

2222

4444

3333 1111

• Switches are also known as
learning bridges or learning
switches.

• A switch has a source address
table in cache (RAM) where it
stores source MAC address
after it learns about them.

• A switch receives an Ethernet
frame it searches the source
address table for the
Destination MAC address.

• If it finds a match, it filters the
frame by only sending it out
that port.

• If there is not a match if floods
it out all ports.

Source Address Table

Port Source MAC Add. Port Source MAC Add.

•

 11

No Destination Address in table, Flood

switch

3333 1111

• How does it learn source MAC
addresses?

• First, the switch will see if the
SA (1111) is in it’s table.

1111

Abbreviated

MAC

addresses

2222

3333

4444

• If it is, it resets the timer (more
in a moment).

• If it is NOT in the table it adds
it, with the port number.

• Next, in our scenario, the

switch will flood the frame out

all other ports, because the DA

is not in the source address

table.

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111

•

12

Destination Address in table, Filter

switch

1111 3333

Abbreviated

MAC

addresses

2222

4444

1111 3333

• Most communications involve
some sort of client-server
relationship or exchange of
information. (You will
understand this more as you
learn about TCP/IP.)

• Now 3333 sends data back to
1111.

• The switch sees if it has the SA
stored.

• It does NOT so it adds it. (This
will help next time 1111 sends
to 3333.)

• Next, it checks the DA and in
our case it can filter the frame,
by sending it only out port 1.

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111 6 3333

13

•
Destination Address in table, Filter

3333 1111

switch
1111 3333

1111

Abbreviated

MAC

addresses

2222

3333

4444

• Now, because both MAC
addresses are in the switch’s table,
any information exchanged
between 1111 and 3333 can be
sent (filtered) out the appropriate
port.

• What happens when two devices

send to same destination?

• What if this was a hub?
• Where is (are) the collision

domain(s) in this example?

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111 6 3333

•

14

No Collisions in Switch, Buffering

Source Address Table

Port Source MAC Add. Port Source MAC Add.

3333 1111

switch

1111

Abbreviated

MAC

addresses

2222

3333

4444

3333 4444

• Unlike a hub, a collision does

NOT occur, which would cause

the two PCs to have to

retransmit the frames.
• Instead the switch buffers the

frames and sends them out port
#6 one at a time.

• The sending PCs have no idea

that their was another PC

wanting to send to the same

destination.

1 1111 6 3333

9 4444

•

15

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1

9

1111

4444

6 3333

Collision Domains

Collision Domains

3333 1111

switch

1111 3333

Abbreviated

MAC

addresses

2222

4444

3333 4444

• When there is only one device

on a switch port, the collision

domain is only between the PC

and the switch.

• With a full-duplex PC and

switch port, there will be no

collision, since the devices and

the medium can send and

receive at the same time.

•
What happens here?

16

1111 3333

• Notice the Source

Address Table has

multiple entries for

port #1.

3333

1111 2222 5555

Source Address Table

Port Source MAC Add. Port

Source MAC Add.

1 1111 6 3333

1 2222 1 3333

•
What happens here?

17

1111 3333

• The switch filters the

frame out port #1.
• But the hub is only a

layer 1 device, so it

floods it out all

ports.

• Where is the

collision domain?

3333

1111 2222 5555

Source Address Table

Port Source MAC Add. Port

Source MAC Add.

1 1111 6 3333

1 2222 1 5555

•
What happens here?

18

1111 3333

Collision Domain

3333

1111 2222 5555

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111 6 3333

1 2222 1 5555

19

• LAN segmentation with routers

• Router operates at the network layer and uses the IP address to
determine the best path to the destination node.

• Bridges and switches provide segmentation within a single network or
subnetwork.

• Routers provide connectivity between networks and subnetworks.
• Routers also do not forward broadcasts while switches and

bridges must forward broadcast frames.

20

• Layer 2 and layer 3 switching

(routing)

• The Layer 3 header information is examined and the packet is
forwarded based on the IP address.

21

• Symmetric and asymmetric switching

Note: Most switches are now

100/1000, which allow you to

use them symmetrically or

asymmetrically.

22

• Broadcast domains

172.30.1.21

255.255.255.0

Switch 1

Switch 2
172.30.2.16

255.255.255.0

All Switched Network - Two Networks

• Two Subnets

• Several Collision Domains

• One per switch port

• One Broadcast Domain

172.30.1.25

255.255.255.0

172.30.2.14

255.255.255.0

172.30.1.27

255.255.255.0

• Even though the LAN switch reduces the size of collision domains, all
hosts connected to the switch are still in the same broadcast domain.

• Therefore, a broadcast from one node will still be seen by all the other

172.30.2.10 172.30.1.23 172.30.2.12
255.255.255.0 255.255.255.0 255.255.255.0

23

nodes connected through the LAN switch.

24

Switches and broadcast domains

• When a device wants to send out a Layer 2 broadcast, the destination
MAC address in the frame is set to all ones.

• A MAC address of all ones is FF:FF:FF:FF:FF:FF in hexadecimal.
• By setting the destination to this value, all the devices will accept and

process the broadcasted frame.

•
Single Hub

25

Single Hub

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

• One Network (IP Network Address - usually)

• One Collision Domain

• One Broadcast Domain

Hub 1

172.30.1.21

255.255.255.0

172.30.1.24

255.255.255.0

•
Single Hub

26

This is fine for small workgroups, but does not scale

well for larger workgroups or heavy traffic.

•
Single Hub

27

Hub 1

172.30.1.21 172.30.2.22

255.255.255.0 255.255.255.0

172.30.1.22

255.255.255.0

Single Hub - Two subnets

• Two subnets

• One Collision Domain

• One Broadcast Domain

172.30.2.21

255.255.255.0

Note: Different color

hosts refer to

different subnets.

What if the computers were on two different subnets?

Could they communicate within their own subnet? Yes

Between subnets? No, need a router. The sending host will check the destination IP
address with its own IP address and subnet mask. The AND operation will determine
that it is on a different subnet and cannot be reached without sending the packet to a
default gateway (router). This is even though they are on the same physical network.

28

• Multiple Hubs

Hub 1

172.30.1.21

255.255.255.0

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

Hub 2

172.30.1.27

255.255.255.0

All Hubs

• One Network Address

• One Collision Domain

• One Broadcast Domain

172.30.1.24

255.255.255.0

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

29

• Using Switches

• Layer 2 devices
• Layer 2 filtering based on Destination MAC addresses and

Source Address Table
• One collision domain per port
• One broadcast domain across all switches

30

• Switches create multiple parallel paths

Hub

172.30.1.21

255.255.255.0

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

Switch

172.30.1.27

255.255.255.0

Switch and Hub Network

• One Network

• Several Collision Domains

• One per switch port

• One for the entire Hub

• One Broadcast Domain

172.30.1.24

255.255.255.0

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

Two parallel paths: (complete SAT tables)

Data traffic from 172.30.1.24 to 172.30.1.25

Data traffic from 172.30.1.26 to 172.30.1.2

31

• Hubs do not create multiple parallel paths

Collision!

Hub

172.30.1.21

255.255.255.0

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

Switch

172.30.1.27

255.255.255.0

Switch and Hub Network

• One Network

• Several Collision Domains

• One per switch port

• One for the entire Hub

• One Broadcast Domain

172.30.1.24

255.255.255.0

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

As opposed to the Hub:

Data traffic from 172.30.1.21 to 172.30.1.22

Data traffic from 172.30.1.23 to 172.30.1.24

•
Switches create multiple parallel paths

32

Hub

172.30.1.21

255.255.255.0

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

Switch

172.30.1.27

255.255.255.0

Switch and Hub Network

• One Network

• Several Collision Domains

• One per switch port

• One for the entire Hub

• One Broadcast Domain

172.30.1.24

255.255.255.0

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

•
Switches create multiple parallel paths

33

Collisions and Switches:

What happens when two devices on a switch, send data to another device
on the switch?

172.30.1.24 to 172.30.1.25 and 172.30.1.26 to 172.30.1.25

•
Switches create multiple parallel paths

34

Hub

172.30.1.21

255.255.255.0

172.30.1.22

255.255.255.0

172.30.1.23

255.255.255.0

Frames

buffered

Switch

172.30.1.27

255.255.255.0

Switch and Hub Network

• One Network

• Several Collision Domains

• One per switch port

• One for the entire Hub

• One Broadcast Domain

172.30.1.24

255.255.255.0

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

The switch keeps the frames in buffer memory, and queues the traffic for
the host 172.30.1.25.

This means that the sending hosts do not know about the collisions and do
not have to re-send the frames.

35

•
Other Switching Features

172.30.1.21

255.255.255.0

Switch 1

Switch 2
172.30.1.28

255.255.255.0

All Switched Network

• One Network
• Several Collision Domains

• One per switch port

• One Broadcast Domain

172.30.1.25

255.255.255.0

172.30.1.26

255.255.255.0

172.30.1.27

255.255.255.0

172.30.1.22 172.30.1.23 172.30.1.24
255.255.255.0 255.255.255.0 255.255.255.0

36

Ports between switches and server ports are good candidates for higher

bandwidth ports (100 Mbps) and full-duplex ports.

Most switch ports today are full-duplex.

37

•
Introducing Multiple Subnets/Networks

without Routers

• Switches are Layer 2 devices
• Router are Layer 3 devices
• Data between subnets/networks must pass through a

router.

•
Switched Network with Multiple Subnets

38

ARP Request

172.30.1.21

255.255.255.0

Switch 1

Switch 2
172.30.2.16

255.255.255.0

All Switched Network - Two Networks

• Two Subnets

• Several Collision Domains

• One per switch port

• One Broadcast Domain

172.30.1.25

255.255.255.0

172.30.2.14

255.255.255.0

172.30.1.27

255.255.255.0

172.30.2.10 172.30.1.23 172.30.2.12
255.255.255.0 255.255.255.0 255.255.255.0

•
Switched Network with Multiple Subnets

39

•

What are the issues?

Can data travel within the subnet? Yes

Can data travel between subnets? No, need a router!

What is the impact of a layer 2 broadcast, like an ARP Request?

•
Switched Network with Multiple Subnets

40

ARP Request

172.30.1.21

255.255.255.0

Switch 1

Switch 2
172.30.2.16

255.255.255.0

All Switched Network - Two Networks

• Two Subnets

• Several Collision Domains

• One per switch port

• One Broadcast Domain

172.30.1.25

255.255.255.0

172.30.2.14

255.255.255.0

172.30.1.27

255.255.255.0

172.30.2.10 172.30.1.23 172.30.2.12
255.255.255.0 255.255.255.0 255.255.255.0

•
Switched Network with Multiple Subnets

41

All devices see the ARP Request, even those on the other subnets that do not need to

see it.

One broadcast domain means the switches flood all broadcast out all ports, except the

incoming port.

Switches have no idea of the layer 3 information contained in the ARP Request.This

consumes bandwidth on the network and processing cycles on the hosts.

42

•
One Solution: Physically separate the subnets

Switch 2
172.30.2.16

255.255.255.0

Two Switched Networks

• Two Subnets

• Several Collision Domains

• One per switch port

• Two Broadcast Domain

172.30.2.10

255.255.255.0

172.30.2.12

255.255.255.0

172.30.2.14

255.255.255.0

172.30.1.21

255.255.255.0

Switch 1

172.30.1.23 172.30.1.25 172.30.1.26
255.255.255.0 255.255.255.0 255.255.255.0

43

But still no data can travel between the subnets.

How can we get the data to travel between the two subnets?

44

•
Another Solution: Use a Router

172.30.1.21

255.255.255.0

Switch 1

172.30.1.1

255.255.255.0

Router

172.30.2.1

255.255.255.0

Switch 2
172.30.2.16

255.255.255.0

Routed Networks

• Two Subnets

• Several Collision Domains

• One per switch port

• Communication between subnets

172.30.2.10

255.255.255.0

172.30.2.12

255.255.255.0

172.30.2.14

255.255.255.0

172.30.1.23 172.30.1.25 172.30.1.26
255.255.255.0 255.255.255.0 255.255.255.0

45

• Two separate broadcast domains, because the router will

not forward the layer 2 broadcasts such as ARP Requests.

46

 ؤ

