NV AWDND =

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

What is python?

Python is a high-level, interpreted programming language that is widely used
for web development, scientific computing, data analysis, artificial intelligence,
and many other applications.

Python is known for its simplicity, readability, and ease of use. Its syntax is
straightforward and easy to learn, making it an excellent language for
beginners. At the same time, it is powerful enough to handle complex projects
and has an extensive library of modules and tools that make programming
more efficient.

Python is an interpreted language, meaning that the code is not compiled
before execution. Instead, the code is interpreted line-by-line at runtime,
which allows for faster development and easier debugging.

What is python Used For ?

Python is a versatile programming language that can be used for a wide range
of applications. Here are some of the most common use cases for Python:

Web Development.

Data Science.

Machine Learning.
Scripting and Automation.
Scientific Computing.
Game Development.
Artificial Intelligence.
Internet of Things (IoT).

IDLE

The Python programming language has a wide range of syntactical
constructions, standard library functions, and Interactive DeveLopment
Environment features.

IDLE is a simple integrated development environment (IDE) that comes
with Python. It’s a program that allows you to type in your programs and
run them.

While the Python interpreter is the software that runs your Python
programs, the interactive development environment (IDLE) software is

where you’ll enter your programs.

el Cabal o2 sl Al da) Js¥) Caall/ gudal) dadaif ol

Typing things in python
Case Case matters. To Python, print, Print, and PRINT are all different things.

Spaces Spaces matter at the beginning of lines, but not elsewhere.

For example, the code below will not work.
no = eval (input('Enter Number: "))

On the other hand, spaces in most other places don’t matter. For instance, the following
lines have the same effect:

print(‘Hello world!")

print (‘Hello world!")

print('Hello world!")

Who to print any thing in python?
Print(“hello “)

Print(“my name is Fatima “)

Print("l am 20 years old")

| & Python 3.7.3 Shell - m| 4

File Edit Shell Debug Options Window Help

Python 3.7.3 (v3.7.3:efd4ecéedl2, Mar 25 2019, 22:22:05) [M5C v.l1516 €4 bit (AMD&
4)] on win32

Type "help”, "copyright™, "credits"™ or "license ()™ for more information.
>>> print ("hello"™)

hello

=>> print ("my name is fatima"™)

my name is fatima

»>» print ("i am 20 years old")

iam 20 years old

If we want to change the names and ages and other information above we should use
varibales to make it easy.

Like this :

name="Fatima”

age="22"

print(“my name is “+name)
print(“ | am” +age + "years old “)

Your First Program

While the interactive shell is good for running Python instructions one
at a time, to write entire Python programs, you’ll type the instructions
into the file editor. The file editor is similar to text editors such as
Notepad or TextMate, but it has some specific features for typing in
source code. To open the file editor in IDLE, select File=>New Window.

el Cabal o2 sl Al da) Js¥) Caall/ gudal) dadaif ol

Now it’s time to create your first program! When the file editor window
opens, type the following into it:

This program says hello and asks for my name.
print(‘"What is your name?')

myName = input()

print('lt is good to meet you, ' + myName)
print('The length of your name is:')
print(len(myName))
print('What is your age?')
myAge = input()
print('You will be ' + str(int(myAge) + 1) + 'in a year.')

You should Save your programs every once in a while as you type them.

To run program ,Select Run=>Run Module

The program’s output in the interactive shell should look something like this: Python 3.3.2
(v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)] on win32 Type
"copyright", "credits" or "license()" for more information. >>>

=== = ===== RESTART = =

>>> What is your name?

Ali

It is good to meet you, Ali
The length of your name is: 3
What is your age? 21

You will be 22 in a year.

>>>

To reload a saved program, select File=>0Open from the menu. In the window that

appears, choose the program you want to open, and click the Open button. The program
should open in the file editor window.

With your new program open in the file editor, let’s take a quick tour of the Python
instructions it uses by looking at what each line of code does.

Comments
The following line is called a comment.
This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or remind yourself what the
code is trying to do.

el Cabal o2 sl Al da) Js¥) Caall/ gudal) dadaif ol

The Input() function is a simple way for your program to get information from
people using your program.

Examplel:

name = input('Enter your name: ')

print('Hello, ', name)

The basic structure is

variable name = input(message to user)

The above works for getting text from the user. To get numbers from the user to use in
calculations, we need to do something extra.

Example2:

num = eval(input('Enter a number:'))

print('"Your number squared:', num*num)

Example3:

temp = eval (input ('t

print ('

The @val function converts the text entered by the user into a number.

The Print() function

The print function requires parenthesis around its arguments. Anything inside quotes will
(with a few exceptions) be printed exactly as it appears. In the following, the first statement
will output 3+4, while the second will output 7.

print('3+4')
print(3+4)

To print several things at once, separate them by commas.

print ('The value of 3+4 is', 3+4)
print ('A', 1, *'XYZ’',

The value of 3+4 is 7
A 1 XYZ 2

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

Optional arguments

sep Python will insert a space between each of the arguments of the print function. There is
an optional argument called sep, short for separator, that you can use to change that space
to some thing else.

print('the value of 3+4=',3+4,"." sep="")

the value of 3+4=7.

end The print function will automatically advance to the next line.

print ('On the first line', end="")
print ('On the second line')
:]

On the first lineOn the second line

Variables

A variable is like a box in the computer’s memory where you can store a single
value. You’ll store values in variables with an assignment statement.

Think of a variable as a labeled box that a value is placed in, spam=42:

Figure 1-2: spam = 42 is like telling the program,
“The variable spam now has the integer value 42 in it."

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

what the values of x and v will be after the code is executed.

After these four lines of code are executed, xis 4, yis5and z is 8.
Variable names

There are just a couple of rules to follow when naming your variables.
¢ Variable names can contain letters, numbers, and the underscore.

e Variable names cannot contain spaces.

e Variable names cannot start with a number.

e Case matters—for instance, temp and Temp are different.

Valid variable names Invalid variable names

balance current-balance (hyphens are not allowed)
currentBalance current balance (spaces are not allowed)
current_balance 4account (can't begin with a number)

_spam 42 (can't begin with a number)

SPAM total_$um (special characters like $ are not allowed)
account4 'hello’ (special characters like ' are not allowed)

Reserved Words

® You cannot use reserved words as variable names / identifiers

False class return is finally
None if for lambda continue
True def from while nonlocal
and del global not with

as elif try or yield

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

EX1: Write a program that asks the user to enter three numbers (use
three separate input statements). Create variables called total and
average that hold the sum and average of the three numbers and print
out the values of total and average.

#this program to find total and avarege
nl=eval(input('enter nol'))
n2=eval(input('enter no2'))
n3=eval(input('enter no3'))
total=n1+n2+n3

average=total/3
print("total=",total,"average=",average)

Ex2:

Ask the user to enter a number. Print out the square of the number, but use the sep optional
argument to print it out in a full sentence that ends in a period. Sample output is shown
below.

Enter a number: 5
The square of 5 is 25.

Numeric Expressions

>>> jj = 23

>»> kk = 55 $ 5
>>> print (kk)

3

>>> print(4 ** 3)
64

> xx =2 /o
D > xx = xx + 2
>>> print (xx)

4

>>> yy = 440 * 12
>>> print(yy)
5280

>>> zz = yy / 1000 4R3
>>> print(zz) 5123
5.28 E

3

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

Operator Precedence Rules

Highest precedence rule to lowest precedence rule:

— Parentheses are always respected Power

— Exponentiation (raise to a power) I\Ju}txphcahon

tior

— Multiplication, Division, and Remainder Left to Right

— Addition and Subtraction

— Left to right

D> x =1+ 2 ** 3 / 4 * 5
>>> print(x)

11.0

>>>

Power
Multiplication

Left to Right

Several Types of Numbers:
 Numbers have two main types

- Integers are whole numbers:
-14, -2, 0, 1, 100, 401233

- Floating Point Numbers have decimal parts: -2.5, 0.0, 98.6, 14.0

e There are other number types - they are variations on float and integer

x=1
>>> type (X)
dolass: TRttt
t=89. 6
type (t)
V' Eloeoat!>

'intt>»
pe (10.5)
YFloat's

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

The str(), int(), and float() Functions

The str(), int(), and float() functions will evaluate to the string, integer, and floating-
point forms of the value you pass, respectively. Try converting some values in the interactive
shell with these functions, and watch what happens.

>>> str(0)

o'

>>> str(-3.14)
'-3.14"

>>> int('42")
42

>>> int('-99")
-99

>>> int(1.25)
1

>>> int(1.99)
1

>>> float('3.14")
3.14

>>> float(10)
10.0

What does the variable bacon contain after the following code runs?

bacon = 20
bacon + 1

Why does this expression cause an error? How can you fix it?

'T have eaten ' + 99 + ' burritos.'

Math functions

The math module Python has a module called math that contains familiar math functions,
including sin, cos, tan, exp, log, log10, factorial, sgrt, floor, and ceil. There are also the
inverse trig functions, hyperbolic functions, and the constants pi and e. Here is a short
example:

1 math pi
print ('Pi is roughly', pi)
print ('sin(0) =', sin(0))

Pi is roughly 3.14159265359
sin(0) = 0.0

Strings
* A string object is a ‘sequence’, i.e., it’s a list of items where each item has a defined position.

e Each character in the string can be referred, retrieved and modified by using its position.

¢ This order id called the ‘index’ and always starts with 0.

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

Accessing Values in Strings

Python does not support a character type; these are treated as strings of length one, thus also
considered a substring.

To access substrings, use the square brackets for slicing along with the index or indices to obtain
your substring. For example —

varl«': 1d’

vara="g

eliowo orldworldworld
> print(s+ ') Vhg)

Helloworld world world world

Updating Strings

You can "update" an existing string by reassigning a variable to another string. The new value can
be related to its previous value or to a completely different string altogether. For example —

#1/usr/bin/python

varl = 'Hello World!'

print "“Updated String :- ", vari[:6] + 'Python'
When the above code is executed, it produces the following result —

Updated String :- Hello Python

String Methods
Python includes the following built-in methods to manipulate strings

capitalize

Capitalizes first letter of string

>>> print(varl.capitalize())
Hello world

isalnum

Returns true if string has at least 1 character and all characters are alphanumeric and
false otherwise.

isalpha

Returns true if string has at least 1 character and all characters are alphabetic and false
otherwise.

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

. .

Returns true if a unicode string contains only numeric characters and false otherwise.

Isupper

Returns true if string has at least one cased character and all cased characters are in
uppercase and false otherwise.

islower

Returns true if string has at least 1 cased character and all cased characters are in
lowercase and false otherwise.

lenstring

Returns the length of the string

lower

Converts all uppercase letters in string to lowercase.

upper

Converts lowercase letters in string to uppercase.

replaceold, newl, maxl

Replaces all occurrences of old in string with new or at most max occurrences if max
given.

s='Awatif Ali"
rl

rint (s.replace('Ali’', 'Salman'))
Awatif Salman

varl="mathmatic"
>>> print(varl.capitalize())
athmatic
>>> print(varl.upper())
MATHMATIC
print(varl.isalpha())
True
; print (varl.isalpha())
True
print (varl.isnumeric())
False

>> print(varl.lower())
mathmatic
>>z print(varl.isalnum())
True

(\n): it used to get new line .
(\”) : it used to put a quotation mark.
(\) : is used to put a slash .

(\t) : it use to put a space after the word .

Olalus Cabal e Ol Aaly daa JsY) Cacall/e gulall dadasl i

>>> print('Mathematict)
Mathematic

>>> print('math\n emat \n tic')
math

emat

ric

>>> print('math\" ematic')
math” ematic

>>> print('math \ ematic')
math \ ematic

>>> print({'math \t smatic')
math ematic

We will often want to pick out individual characters from a string. Python uses square brackets to
do this. The table below gives some examples of indexing the string s=~'Fython’,

s[0] P first character of s

s{1] y second character of s
s(-1] n last character of s

s[-2) o second-to-last character of s

A slice is used to pick out part of a string. It behaves like a combination of indexing and the range
function. Below we have some examples with the string s="'abcdefgni g,

index: 01234567839

letters: abcde £fghiti]j

. Code Rest Descripton
5[2:5] cde characters at indices 2, 3, 4
s] :5] abcde first five characters
s(5:] fghij characters from index 5 to the end
s[-2:] ij last two characters
&lizes) abcdefghij entire string
8[1:7:2] bdf characters from index 1 to 6, by twos

sts s=1) jihgfedcba a negative step reverses the string

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

If statements.

Comparison Operators

Comparison operators compare two values and evaluate down to a single
Boolean value. Table 2-1 lists the comparison operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to

I= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

These operators evaluate to True or False depending on the values you
give them. Let’s try some operators now, starting with == and !=.

>>> 42 == 42
True

>>> 42 == 99
False
»>21=3
True

>>> 'hello' == 'hello’
True

>>> 'hello' == 'Hello'
False

>>> 'dog' != 'cat'
True

>>> True == True

True

>>> True != False
True
>>> 42
True
>>> 42
False

1}
"
+H
N
(=]

n
n
'y
N

Boolean Operators

The three Boolean operators (and, or, and not) are used to compare Boolean
values. Like comparison operators, they evaluate these expressions down
to a Boolean value. Let’s explore these operators in detail, starting with the
and operator.

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

>>> (4 < 5) and (5 < 6)

True
>>> (4 < 5) and (9 < 6)
False
% (1 == 2) oF (2= 2)
True
EX:
arade - eval (input ('Ente:r . 1x . e s o) U)
L f grade>=90:
pxrint ('A')
grade>=-80 ancd grade<90:
print (''B*)
L ¥ grade>=70 ind grade<80:
print (v.cC)
LT grade>=60 ancl grade<70:

pridnt D)
1L Ef grade<60:
praint (*F ')

The else keyword catches anything which isn't caught by the
preceding conditions.

Write a program in which the user enters a number and test whether this number is even or
odd?

x=int(input("Please Enter The Number : "))
if x%2 ==0:

print("is even ")
else:

print("is odd ")

write a program in which the user input any word and the program check if this word is
uppercase or lowercase ?

a=input("Please enter any word : ")
if a.isupper() :

print(a + " is uppercase ")
else:

print(a +" is lowercase")

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

Elif

The elif keyword is pythons way of saying "if the previous conditions were not true, then try
this condition".

grade = eval (input ('Enter your score: '))

if grade>=90:
print ('A’
elif grade>=80:
print ('B')
elif grade>=70:
print ('C’')
elif grade>=60:
print ('D"')
else:
print ('F"')

Chals (ol g Ol daly Al

Python Loops

Python has two primitive loop commands:
e while loops
e for loops

The while Loop

JsY) Cacall/ gulall Al culids

With the while loop we can execute a set of statements as long as a
condition is true. You can make a block of code execute over and over

again with a while statement.

Example

Print i as long as i is less than 6:

1 =1

while 1 < 6:
print (1)
1 +=1

You can see that a while statement looks similar to an if statement.

Let’s look at an if statement and a while loop that use the same
condition and take the same actions based on that condition.

Here is the code with an if statement:

spam = 0

1L spam < 5:
print ("Hello, world.')
spam = spam + 1

Here is the code with a while statement:

spam = (
while spam < 5:

print ("Hello, world."'")
spam = spam + 1

ks
Hello, world.

ik
Hello, world.
Hello, world.
Hello, world.
Hello, world.
Hello, world.

el Cabal o2 sl Al da) Js¥) Caall/ gudal) dadaif ol

The break Statement

There is a shortcut to getting the program execution to break out of a
while loop’s clause early. If the execution reaches a break statement, it
immediately exits the while loop’s clause. In code, a break statement
simply contains the break keyword.

Example
Exit the loop when i is 3:

i=1
while i1 < 6:
print(i)
if 4 ==
break

continue Statements

Like break statements, continue statements are used inside loops.
When the program execution reaches a continue statement, the
program execution immediately jumps back to the start of the loop and
reevaluates the loop’s condition.

Example

Continue to the next iteration if i is 3:

i =1
i< 6:
print (1)
1 == 3:

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

For Loops

A For loop is used for iterating over a sequence.

Example 1:
for i in range(l, 10):
print (i)

Example 2: This program gets 10 numbers from the user and counts how many of those

numbers are greater than 10.

-

range (10) :
num = eval (input ('Enter a number: '))

num>10:

0
C
2 N =
=

count=¢count+1

print (' Ther:

count, 'numbers jreater than

Example 3: This modification of the previous example counts how many of the numbers the
user enters are greater than 10 and also how many are equal to 0. To count two things we
use two count variables.

countl = 0
count2 = 0
i in range(10):
num = eval (input ('Enter a number: '))
num>i10:
countl=countl+l
num==0:
countZ2=countz+1
print ('Th 1 ‘, countl, 'numbers greater than 10.')
print ('There are', count2, 'zerces.')

Example 4: This program will add up the numbers from 1 to 100. The way this works is that
each time we encounter a new number, we add it to our running total, s.

ange(1,101) :
4+ 3

= 8

('Th

0
i r
t =

prin

Example 5: This program that will ask the user for 10 numbers and then computes their
average.

range (10) :
eval (input ('Ente:

S + num
print ('Th

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

Example 4 We can use a while loop to mimic a for loop, as shown below. Both loops have the
exact same effect.

for i in range(10): i=0

print (i) B i<0:

print (i)
i=i+l

Lists

Like a string, a list is a sequence of values. In a string, the values are characters:
in a list, they can be any type. The values in list are called elemenis or sometimes
items,

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets (“[* and *|”):

(10, 20, 30, 40]
['crunchy frog', ‘ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains
a string, a float. an integer, and (lo!) another list:

(‘spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list: yvou can create one with
empty brackets. [].

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)
['Cheddar', 'Edam', 'Gouda'] [17, 1231 (]

Lists are mutable

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

The syntax for accessing the elements of a list is the same as for accessing the
characters of a string: the bracket operator. The expression inside the brackets
specifies the index. Remember that the indices start at (:

>>> print(cheeses[0])
Cheddar

Unlike strings, lists are mutable because you can change the order of items in a
list or reassign an item in a list. When the bracket operator appears on the left
side of an assignment. it identifies the element of the list that will be assigned.
>>> numbers = [17, 123]

>>> numbers[1] =
>>> print(numbers
[17, 8]

)

The one-th element of numbers, which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This rela-
tionship is called a mapping: each index “maps to” one of the elements.

List indices work the same way as string indices:

e Any integer expression can be used as an index.

o If you try to read or write an element that does not exist, you get an
IndexError.

o If an index has a negative value, it counts backward from the end of the list.
The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

Example:1
friends = ['Ali','Ahmed','Hussain’]
for friend in friends:

print('Hello *,friend)

print(‘'done’)

Example 2:

el okl 52 Ol daly Al

s='python'

mylist=['one', 2, 'three','four’, 5]
print(s[0])

print()

print(mylist[0])

print(len(mylist))

print(mylist[:3])

print(mylist[-1])

print(mylist[0:2])

Example 3:
large=-1
Nlist=[51,18,20,94,35,124,16]
for nin Nlist:
if n>large:
large=n
print(large,n)

print('large number is ="',large)

Example:4
s='what if we went to the zoo'
k=0
foriins:
ifiin['0','a",'e","i",'u']:
k=k+1
print('k=",k)

JsY) Cacall/ gulall Al culids

el okl 52 Ol daly Al

Example:5
p='l love python programming'
t=0
for chrin p:
print(chr)
ifchrl=""
t=t+1

print('t="t)

Example:6
mylist=[]
mylist.append(5)
mylist.append(9)
mylist.append(12)
print(mylist)
mylist.insert(2,3)
print(mylist)
mylist.sort()

print(mylist)

JsY) Cacall/ gulall Al culids

Example /: Suppose that wordlist=['gnnan','hanan’,'gnaat','ieman']

Write python program to Print all the words that start with gn

wordlist=['gnnan','hanan’,'gnaat’,'ieman']
for word in wordlist:

if word[:2]=="gn":

el Cabal o2 sl Al da) Js¥) Caall/ gudal) dadaif ol

print(word)

Example 8 :Print all three letter words
wordlist=['Aml' ,'Ahmad’,'ali','Huda’,'saja’,'sma’]
for word in wordlist:

if len(word)==3:

print(word)

Example 9 :Determine number of words start with a
vowel.
wordlist=['Aml' ,'Ahmad’,'ali','Huda’,'saja’,'sma’]
count=0
for word in wordlist:
if word[0] in 'aeiou':
count=count+1

print(‘'number of words start with vowel=", count)

Example 10 :Print all 5-letter words that start with gn
and end in at.

wordlist=['gnnan','hanan’,'gnaat’,'ieman’' , 'Aml' ,'Ahmad’, 'Ali’
,'Huda’, 'Saja’, 'gnnamat']
for word in wordlist:
if len(word)==5 and word[:2]=="gn' and word[-2:]=="at":

print(word)

example 11:

Ohalss Cabal s sl Al da) Js¥) Caall/ gudal) dadaif ol

s=1input ('enter string')

for 1 in range(len(s)):
if s[i]== 'a':
print (1)
>>>

================ RESTART: D:\python program\strins
enter stringAn apple a day keeps the doctor away
3

9

12

32

34

Example 12:
ls=input ('enter string')
d s=""
for ¢ in s:

d s =ds + c*2
print(d s)

enter stringHello
HHeelllloo

enter stringwelcome
wweel lccoommee

Chals (ol g Ol daly Al

Example 13:

wordlist=["gnnan' , 'hanan', 'gnaat', 'ieman' ,

LELeg =

for word in wordlist:
:f len(word)==3 and word[0]="2":
print (word)

TAm] T . T2)
aml’ ,"Ahm

JsY) Cacall/ gulall Al culids

ag!

A ’

ALt]

