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1. Introduction 

Since the end of the nineteenth century and the beginning 
of the twentieth century, concepts of fracture mechanics were 
beginning to appear depending on experimental and 
theoretical studies [1]. Fracture mechanics is the study of the 
mechanical behavior of cracked materials subjected to an 
applied load. The formation of cracks may be a complex 
fracture process, which strongly depends on the microstructure 
of a particular crystalline or amorphous solid, applied loading, 
and environment. The failure in concrete can occur by the 
growth of cracks gradually during loading. As the load is 
increasing, cracks increase in number and grow until one of 
the cracks will propagate through the member [2]. The shear 
failure is very dangerous because it happens suddenly with 
little or no previous warning. The shear design must ensure 
that the shear strength for every member in the structure 
exceeds the flexural strength. The shear failure mechanism 
varies depending upon the cross-sectional dimensions, the 
member properties, the geometry, and the loading types [3]. 
The numerical simulation of crack propagation and the 
analysis of crack growth in reinforced concrete members is 
still an unsolved problem and an important part of current 
research. The development of reliable analytical models can 
reduce the number of required test specimens for the solution 
of a given problem, recognizing that tests are time-consuming 
and costly and often do not simulate exactly the loading and 
support conditions of the actual structure. Full-scale 

simulations of structural systems which cannot be produced 
and tested in a laboratory cannot be produced and tested in a 
laboratory environment can result in a better understanding of 
the failure and cracking behavior of these systems. Many 
computer software packages are available for these 
simulations. The commercially available ABAQUS software 
has dedicated concrete material models that are quite effective 
in realistic simulations [4]. Recent advancements in 
computational simulations have paved the possibility for 
carrying out the design and analysis of concrete structures in a 
more realistic manner.  

Many researchers have used numerical methods to study 
the fracture behavior of members. In 1999, Belytschko and 
Moës suggested a new computational method named the 
extended finite element method (X-

with Black in 1999 and Moës et al., 1999, produced a 
substantial perfection to the basis of traditional FEM to 
simulate the crack without modification of the initial finite 
element mesh. After that, the modifications of the method 
continued to be used in various problems such as localized 
deformation, discontinuous field, fracture, and so on. It has 
become widely used in civil engineering and other fields 
because it offers a good simulation. Then, Moës et al. 1999 
produced the Heaviside function and crack tip function as the 
enrichment shape function of elements including the crack 
surface and tip respectively. Later, Daux et al. in 2000, utilized 
more than one enrichment shape function in crack tip 
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elements, and crack branching was successfully simulated. 
Later, a new crack nucleation criterion was introduced into    
X-FEM by Belytschko et al. 2003. The crack propagation path 
and velocity can be well predicted using this criterion as cited 
in Ref. [6]. Giner et al. in 2009 [7] used XFEM with the finite 
element software ABAQUS to simulate the fracture 
mechanism for the two-dimensional model. User Element 
subroutine (UEL) was used for combining XFEM with 
classical FEM because XFEM was not included in the 
ABAQUS program at that time. In 2011, Johannsson [8] dealt 
with the modeling of cracks in a three-dimensional reinforced 
concrete beam subjected to three-point bending in the 
ABAQUS program. XFEM was used to model the cracking in 
cooperation with the Concrete Damaged Plasticity material 
model. Yang in 2016 [9], used the XFEM and FEM with 
concrete damage plasticity material models to predict the 
failure for a two-dimensional concrete beam with recycled 
aggregate. Al-Zuhairi and Taj in 2018 [10], investigated two-
dimensional, simply supported, plain concrete beams under 
flexural stresses using meso-scale mode by XFEM with 
ABAQUS program for the numerical model. In 2020 [11], 
chen et al. was proposed the XFEM-based multiscale modeling 
approach to investigate the monotonic and hysteretic 
performance of RC columns and Ahmed et al. in 2021 [12], 
conducted the numerical modelling of foamed concrete beam 
under flexural using traction-separation relationship. The 
traction separation relationship was used as a constitutive 
model to incorporate independent material properties and used 
in the modelling framework. 

More studies are required to understand the effect of many 
significant parameters on concrete beam behavior and carrying 
capacity such as change shear span and beam dimensions. The 
major objective of this research is to investigate the fracture 
mechanics of reinforced concrete beams numerically. First, the 
ultimate strength and load-deflection relationships, as well as 
crack patterns, are validated with the corresponding 
experimental results from the previous study carried out by 
Kornbak [13]. After the verification of the XFEM model, it is 
used for conducting a parametric study to determine the effect 
of some parameters on the behavior of reinforced concrete 
beams. 

2. XFEM for crack simulation 

In practice, discontinuities may be found in imperfections, 
cracks, shear bands and in many structural problems. 
Discontinuity can be classified into types: strong and weak 
discontinuity, which represent respectively the cracks and the 
interfaces between two different materials in structural 
concepts [14]. With the conventional finite element method, it 
is difficult to be analyzed the discontinuity that occurs in a 
concrete model. XFEM allows simulation of initiation and 
propagation of a discrete crack along an arbitrary solution path 
without the requirement of remeshing [15]. 

The major concept of this method is adding enrichment 
functions to the standard finite element analysis solution. It is 
based on the multiplication of the enrichment function by the 
nodal shape function. The technique of enrichment could be 
applied to a specific region of the general domain by enriching 
only within that region. Equations (1) and (2) below shown the 
final finite element approximation using enrichment functions 
[1]. 

 
 

 

 

where uj is the vector of regular degrees of nodal freedom 
in the finite element method. ak is the added set of degrees of 
freedom to the standard finite element model and  is the 
discontinuous enrichment function defined for the set of nodes 
that the discontinuity has in its influence (support) domain. 

2.1. Level set method (LSM) 

LSM is a numerical technique for describing a crack and 
tracking the motion of the crack. Combining XFEM with level 
sets improves the XFEM in modelling a growing crack or 
moving phase boundaries. The level set function consists of 
many types of functions, the most common function is the 
signed distance function. The level set approach was 
introduced by Osher [16]. In other words, the signed distance 
function can take one of the following values, Fig. 1 [17]. 

 

 
Fig. 1 Domain with weak discontinuity defined by a bi-material with close 

interface [15]. 

2.2. Enrichment functions 

To solve discontinuities problems, the XFEM relies on the 
Partition of Unity (PU) technique. Equation (4) illustrates how 
the enrichment functions are added to the convenient solution 
in the PU method. There are a number of different enrichment 
options available. Heaviside enrichment function (HSF), H(x) 
is commonly used for strong discontinuities such as crack. It 
was first introduced by Moe's [5]. 

Strong discontinuities can be created when the 
displacement of one side of the crack interface is different 
from the other, this led to a discontinuity in the solution. HSF 
can take two approaches as follows [15]: 

 

or, 

 

Where, (x) is the signed distance function illustrated in 
the previous section. 
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Table 1. The characteristics of concrete and steel. 

Concrete Characteristics Steel Characteristics 

Compressive Strength fc  
(MPa) ( ) 

Density 
(kg/m3) 

Yielding Stress fy 

(MPa) 

Modulus of elasticity Es 

(GPa) ( ) 
Cross-sectional area 

(mm2) 

43 0.2 2350 533 190 0.3 88.356 

 
For the purpose of validation of the extended finite element 

model, experimental test available in literature is utilized. 

3. Experimental analysis of beam 

The beam tested by Kornbak [13] is used to demonstrate 
the applicability of the FE model. The concrete beam was 
simply supported singly reinforced and without transverse 
reinforcement. The longitudinal reinforcement was two 
number 7.5 mm diameter ribbed bars. The cross section of 
beam was 100 × 100 mm as shown in Fig. 2. The figure depicts 
the geometry, loading, and boundary conditions of the beam. 
The properties of the concrete and steel are summarized in 
Table 1. The failure crack was located at 20 mm from the 
support as obtained from the experimental test. The load was 
applied at the midspan on the top surface of the beam by a plate 
of area 50 mm × 100 mm. 

 
All dimension in mm. 

Fig. 2 The details and a cross-section of the reinforced concrete beam. 

4. Finite element modelling 

Finite element simulations of reinforced concrete beams 
are performed using commercial software ABAQUS/Standard 
2017. Materials nonlinearity is taken into account. 

4.1. Materials properties 

Non-linearity in concrete due to its complex composition 
has been given thought in this constitutive modeling to 
faithfully capture the response of concrete [18]. In this paper, 
the concrete damage plasticity CDP model is used to describe 
the concrete beam behavior. The nonlinear stress-strain 
relationship of concrete in compression is presented in Fig. 3. 

 
Fig. 3 The nonlinear stress-strain relationship of concrete in compression, 

Eurocode 2 (2004). 

The elastic properties of the concrete are determined by the 
v). The modulus 

of elasticity of concrete (Ecm) is calculated based on the 
prescribed relation in Eurocode 2 (2004) [19], 

 

 

where, fcm is the cylinder concrete compressive strength 
(mean value) and fck is the characteristic cylinder concrete 
compressive strength at 28 days.  

Using Eurocode 2 (2004) [19], the hardening region was 
found in the uniaxial compression of concrete as, 

 

Where, 

 

and  

 

c is the concrete compressive strength for 0 < | c| < cu1, c 
is the concrete compressive strain, c1 is the compressive strain 
of concrete at peak stress fcm and cu1 is the ultimate 
compressive strain in the concrete. The Eurocode 2 (2004) [19] 
specified that the ultimate strain for characteristic compressive 
strength of concrete between 12-50 MPa, can be taken as 
0.0035. For c1, Majewski proposed approximating formula to 
calculate c1 depending on the experimental result as cited in 
Ref. [20], from the following expression: 

 

The tensile stress is calculated according to Eurocode 2 
(2004) [19] as: 

 

where t is the tensile strain in the concrete at the peak 
stress ft,  is the tensile strain in the concrete and ft is the 
concrete tensile strength, which is expressed by the following 
relationship as in Eurocode 2 (2004) [19]: 
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The stiffness degradations coefficients for the concrete 
damaged plasticity material model for compression (dc) and 
tension (dt) are another important parameter in the damage 
plasticity model available in ABAQUS. They describe the 
evolution of the concrete stresses when the concrete material 
reaches peak stress. Numerous methods are available to 
achieve the damage parameter. Nguyen and Kim (2009) [21] 
presented the following relations for defining prescribed 
parameters, dc = 1  c/fcm and dt = 1  t/ft for compression 
and tension, respectively. The parameters of CDP model that 
are used in the current study are listed in Table 2. 

Table 2. Parameters of CDP model under compound stress. 

 
In the finite element model, an elastic perfectly plastic 

model was used for the steel longitudinal bars with an equal 
behavior in tension and compression. ABAQUS software 
requires input data of Young modulus (Es

(v) to represent the elastic behavior, yield stress (fy), and the 
inelastic strains for defining the plasticity behavior as shown 
in Fig. 4. 

 
Fig. 4 Behavior of steel. 

4.2. Types of used elements 

The concrete beam is modeled with solid elements 
(C3D8R) from the ABAQUS library. They are eight-node 
elements with three translation degrees of freedom at each 
node, and of reduced integration with hourglass control. To 
simulate reinforcement bars, the truss element (T3D2) is 
adopted. It is 2-noded elements having 3 degrees of freedom 
in each node (translations in X, Y and Z directions). In this 
work, frictional contact between the steel and concrete in 
ABAQUS was achieved by using embedded technology [22].  

4.3. Boundary and loading conditions 

The load is displacement controlled; the displacement is 
applied downwards as pressure. The boundary conditions in 
roller support are U1 = U2 = 0, and in hinge support U1 = U2 
= U3 = 0, where U: 1, 2, 3 are the translations in the X, Y and 
Z directions. 

 

 

4.4. Crack initiation criteria and crack length 

Crack initiation criteria must be specified in the XFEM. In 
this study, the maximum principal stress damage is used with 
a value of the ultimate tensile strength ft as maximum principal 
stress at cracking. The ft is determined by Equation (13) based 
on Eurocode 2 [19]. The fracture energy Gf may be estimated 
from the compressive strength of concrete and maximum 
aggregate size according to CEB-FIP MC 90 [23], as: 

 

Where, Gf is fracture energy (N/mm), Gf0 is the base value 
of fracture energy which depends on maximum aggregate size 
dmax as given in Table 3, fcm is the mean value of concrete 
cylinder compressive strength (MPa) and fcmo equals 10 MPa. 
Fracture energy (Gf) is calculated depending on the maximum 
aggregate size dmax of 10 mm as used in the experimental test 
[13]. The resulting fracture energy from Equation (14) equals 
0.072 N/mm. 

Table 3. The base value of Gf0 

dmax (mm) 8 16 32 

Gfo (N/mm) 0.025 0.030 0.058 

 
To determine the suitable predefined crack length which 

gives results with acceptable accuracy compared with the 
experimental study, three beams with different initial crack 
lengths are studied, which are 5 mm, 10 mm and 15 mm.   
Table 4 summarized the results of different crack lengths. The 
ultimate load of the beam with crack length of 5 mm is very 
close to the ultimate load in the experimental test. Therefore, 
the crack length of 5 mm is used throughout this study. 

Table 4. Variation of ultimate load with different crack lengths. 

Crack Length 
(mm) 

Ultimate Load 
(kN) XFEM 

Load 
Ratio 

Ultimate Load 
(kN) Exp. 

5 27.5 1 

28.6 10 26.4 0.96 

15 25.7 0.94 

 
4.5. Mesh size  

Six models with different mesh sizes are examined to select 
a suitable mesh size which gives results with acceptable 
accuracy compared with the experimental study. The main 
parameters considered for this purpose are the ultimate load 
and the failure mode. The results of the study are presented in 
Table 5. It has been found that model (5) gives acceptable 
results for the ultimate load. The failure mode and crack 
propagation which are obtained experimentally along with 
those given by XFEM for model (5) are shown in Fig. 5. The 
load-deflection relationships, the experimental and numerical, 
are depicted in Fig. 6. Therefore, model (5) is used throughout 
this study. 

 

 

Parameter name Value 

Dilatation angle 38° 

Eccentricity 0.1 

fbo /fco 1.16 

K 0.667 

Viscosity parameter 0.0001 
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Table 5. Results of models with different element sizes and the ultimate load of the experimental beam. 

Model No. No. of Elements No. of Nodes Ultimate Load (kN) XFEM  Ultimate Load (kN) Exp. 

(1) 234 432 24.1 

28.6 

(2) 512 825 25.8 

(3) 1025 1512 26.8 

(4) 2597 3456 27.1 

(5) 8000 9922 27.5 

(6) 64000 71001 27.9 

 
(a) 

 
(b) 

Fig. 5 The crack propagation under loading, (a) shear failure in the 
experimental test, and (b) crack path numerically by XFEM. 

 

Fig. 6 Variation of mid-span deflection with load for model (5). 

5. Results and Discussions 

The main variables considered in the study were beam 
depth and the shear span with a beam length. 

5.1. Influence of change in beam depth 

To investigate the influence of the change of the beam 
depth under the three-point bending test, six beams are studied 
with similar properties and geometry, but with different 
depths. The beams are longitudinally reinforced with two bars 
with a diameter of 7.5 mm as the beam in the experimental test. 
The material properties of the concrete and steel are 

summarized in Table 1. The depths of investigated beams are 
100 mm, 150 mm, 200 mm, 250 mm, 300 mm, and 350 mm. 

The numerical results are compared with the results of 

fracture mechanics method) [24], which is given as: 

 

 

In which fcm and Vu are in psi. 
Pu = the shear strength. 
 = As /(B W), reinforcement ratio. 

S = effective length of the beam. 
W = the height of the beam. 
B = the width of the beam. 
dmax = maximum aggregate size. 

The numerical results are also compared with the 
provisions of the ACI code (318-19) [25]. The ACI equation 
for nominal concrete shear strength provided by concrete for 
Av < Av min. is: 

 

 

Where, 
 = modification factor (equal 1 for normal concrete). 
s = factor used to modify shear strength based on the effects 

of member depth and given by: 
 

 

w = steel ratio = As / bw . d 
bw = the beam width, mm. 
d = the beam depth, mm. 
fcm = cylinder concrete compressive strength (in MPa). 

The results of the six beams are summarized in Table 6, 
including the cracks distances and the load value associated 
with the first crack and the failure crack. The first crack 
distance for all the beams is approximately 290 mm from the 
support, but the load value associated with the first crack is 
different for each beam. The ratios of the first crack load to the 
ultimate load are in the range of 0.25 to 0.46.  
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Table 6. The results of traditional nonlinear FEM, XFEM and ACI code for beams with different depths. 

Beam 
Height 
(mm) 

FEM XFEM 
 

Kim  
Eq. (10) 

ACI 
Eq. (12) 

Failure  
Type * First 

Crack 
Distance 

(mm) 

First 
Crack 
Load 
(kN) 

* Failure 
Crack 

Distance 
(mm) 

Ultimate 
Load 
(kN) 

** Load 
Ratio 

* Failure 
Crack 

Distance 
(mm) 

Ultimate 
Load 
(kN) 

Ultimate 
Load 
(kN) 

Ultimate 
Load 
(kN) 

100 290 7.1 20 28.9 0.25 20 27.5 18.6 15.4 Shear 
150 290 15 20 45.8 0.33 20 43.9 28.1 21.4 Shear 
200 290 27.1 30 67.6 0.40 30 65.2 40.6 26.4 Shear 
250 290 37.7 30 87.6 0.43 30 85.2 56.8 31.2 Shear 
300 290 47.7 60 110.5 0.43 60 108.3 77.1 34.4 Shear 
350 290 55 290 119.7 0.46 290 111.3 101.8 36.8 Bending 

 
 

*  The crack distance measured from the support. 

 

The failure mechanism of the reinforced concrete beams is 
modelled quite well using XFEM and the failure load predicted 
is close to the failure load obtained by FEM analysis. Fig. 7 
reveals that the load capacity increases with the increase in 
beam depth. This finding is obtained from the results of 
XFEM, Equation (15) and ACI-Equation (17). However, the 
maximum concrete shear stress decreases with the increase in 
beam depth for ACI-Equation (17) as shown in Fig. 8, but no 
clear relation is obtained from the results of XFEM and 
Equation (15). 

 
Fig. 7 

ACI code. 

 
Fig. 8 Concrete strength versus beam depth relations fo

Kim Eq. and ACI code. 

Depending on the change in the beam depth, different 
modes of failure are observed as shown in Fig. 9. Several 
micro-cracks appeared at the early stages of the loading 
process. These cracks extended and widened as the load is 
increased. Then cracks are developed at the middle region of 
the beam in the tension zone under applied load. After the 
flexural cracks, diagonal cracks appeared, causing the failure 
of the beam. It is observed that all investigated beams failed 
by shear except the last beam with a depth of 350 mm. This 
may be due to this beam acts as a deep beam. Deep beams are 
members that are loaded on one face and supported on the 
opposite face such that struts as compression members and ties 
develop between the load and supports, thus, it prevents shear 
failure. By the comparison of the crack propagation using 
XFEM with the crack pattern of the non-linear finite element 
method, it can be seen that the crack pattern is in good 
agreement for all the beams. 

Figure 10 shows the relations between the loads and 
deflections. The first crack load and the ultimate load can also 
be observed for the beams with different depths.  All beams 
seem to have a similar response, especially in the elastic 
region. The results of nonlinear FEM and XFEM are in 
reasonable agreement. 

5.2. Influence of change in shear span 

Analysis is also conducted to investigate the influence of 
the change in the beam length and the influence of the shear 
span on diagonal crack propagation and the load-carrying 
capacity of the beams. Two different shear spans are 
examined, which are L/3 and L/4, L is beam length. The 
investigated concrete beams are simply supported under two 
symmetrical concentrated loads and reinforced with 
longitudinal reinforcement without shear reinforcement. The 
beams are longitudinally reinforced with four bars with a 
diameter of 20 mm. The details and the cross-section of the 
tested reinforced concrete beams are shown in Fig. 11. The 
distance S is equal to 100 mm for beams with L = 1000 mm to 
3000 mm and 250 mm for beams with L = 4000 mm to 6000 
mm, a = L/3 and L/4. The material properties of the concrete 
and steel are summarized in Table 7. The initial crack is of        
5 mm length. Due to the symmetry, the three-dimensional 
analysis is performed on one-half of the beam length and 
appropriate boundary conditions are applied on the cuts as 
shown in Fig. 12. The symmetry of the beams is in the               
Z-direction therefore U3 = UR1 = UR2 = 0, where U3 is the 
translation in the Z-direction, UR:1, 2 are the rotation about X 
and Y axes respectively. 
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Fig. 9 Crack pattern for beams with different depths using (a) FEM and (b) XFEM.

 
(a) Depth = 150 mm 

 
(b) Depth = 250 mm 

 
(c) Depth = 300 mm 

Fig. 10 Load-deflection relations for beams with different depths. 

 
Fig. 11 Setup of the beam and cross-section details. 

         
Fig. 12 ABAQUS model for half beam. 

The results of the reinforced concrete beams with a shear 
span of L/3 and L/4 are summarized in Tables 8 and 9, 
respectively, including the cracks distances, and the load 
values associated with the first cracks and the failure cracks. 
The load ratios which are defined as first crack load/ultimate 
load for FEM and XFEM are in the range (0.4 - 0.49) and   
(0.38 - 0.47), respectively in beams with a shear span of L/3. 
While the first cracks of all beams appeared when the load 
reached (0.44 - 0.64) of the ultimate load in FEM and           
(0.41 - 0.63) in XFEM in beams with a shear span of L/4. 
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First Crack Failure Crack Failure Crack 

First Crack Failure Crack Failure Crack 

First Crack and Failure Crack Failure Crack 
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Table 7. The characteristics of concrete and steel. 

Concrete Characteristics Steel Characteristics 

Compressive 
Strength fc  

(MPa) 
 

Density 
(kg/m3) 

Fracture energy 
(N/mm) 

Yielding Stress fy 

(MPa) 
Modulus of elasticity 

Es (GPa)  
Cross-sectional area 

(mm2) As 

43 0.2 2400 0.072 570 200 0.3 1256.64 

 
Table 8. FEM and XFEM results of RC beams with different lengths under four-point loads and shear span = L/3. 

Beam 
Length 
(mm) 

FEM XFEM 

Failure 
Type 

* First 
Crack 

Distance 
(mm) 

First 
Crack 
Load 
(kN) 

* Failure 
Crack 

Distance 
(mm) 

Ultimate 
Load 
(kN) 

** 
Load 
Ratio 

* First 
Crack 

Distance 
(mm) 

First Crack 
Load 
(kN) 

Ultimate 
Load (kN) 

** 
Load 
Ratio 

 

1000 30 110.2 30 227.2 0.49 30 105.1 224.8 0.47 Shear 

2000 750 103 30 220.5 0.46 750 99.8 210 0.47 Shear 

3000 950 78.6 30 187 0.42 950 72.4 185.7 0.39 Shear 

4000 1550 57.7 30 143.6 0.40 1550 53.2 140.1 0.38 Shear 

5000 1550 41.6 1350 102.6 0.41 1550 39.2 99.3 0.39 Bending 

6000 1900 34.6 1725 76 0.45 1900 31.9 73.4 0.43 Bending 
 

Table 9. FEM and XFEM results of RC beams with different lengths under four-point loads and shear span = L/4. 

Beam 
Length 
(mm) 

FEM XFEM 

Failure 
Type 

* First 
Crack 

Distance 
(mm) 

First 
Crack 
Load 
(kN) 

* Failure 
Crack 

Distance 
(mm) 

Ultimate 
Load 
(kN) 

** 
Load 
Ratio 

* First 
Crack 

Distance 
(mm) 

First Crack 
Load 
(kN) 

Ultimate 
Load (kN) 

** 
Load 
Ratio 

1000 20 165 30 259 0.64 20 162.7 256.8 0.63 Shear 

2000 500 120.8 30 235 0.52 500 116.9 230 0.51 Shear 

3000 750 110 30 212 0.52 750 107 210.8 0.51 Shear 

4000 975 77.5 30 167 0.46 975 72.9 165 0.44 Shear 

5000 1150 56.8 700 130 0.43 1150 52.7 126 0.42 Shear 

6000 1825 42.7 1675 96.5 0.44 1825 39.6 95 0.42 Bending 

 
*  The crack distance measured from the support. 

 

The failure mode of the reinforced concrete beams with a 
shear span of L/3 and L/4 for both the FEA and XFEM are 
depicted in Figs. 13 and 14, respectively. There was a good 
agreement between the results of the FEA and the XFEM for 
the concrete crack patterns. 

The variation of the deflection with the load of the 
reinforced concrete beams with a shear span of L/3 and L/4 for 
both the FEA and XFEM are depicted in Figs. 15 and 16, 
respectively. In general, the load-deflection relations obtained 
from the FEM results show an excellent agreement with those 
of the XFEM. 

According to the results above for beams with different 
lengths and different loading conditions, the shear strength of 
simply supported beams is significantly influenced by the 
shear span. The loading condition is the primary parameter that 
significantly influenced the shear failure mechanism in 
concrete beams reinforced longitudinally and without 
transverse reinforcement. In general, with increasing the shear 

span, the failure loads and consequently the shear strength of 
the examined beams decreased as shown in Fig. 17. It can be 
seen that a linear relation exists between the ultimate load and 
beam length for different shear spans. The correlation 
coefficient R2 for the obtained linear equations are (0.9867) 
and (0.9773) for shear spans L/4 and L/3 respectively. 
Considering the results of XFEM, the obtained equations are: 

For shear span L/3:  

P = - 0.0324 L + 269.02     which may be simplified to  
P = - L/31 + 269 

For shear span L/4: 

P = - 0.0333 L + 297.28      which may be simplified to  
P = - L/30 + 297 

where P is the ultimate load in kN (shear) and L is the 
effective span of the beam in mm.  

The two straight lines in Fig. 11 are approximately parallel 
therefore, the increase in shear strength is about 10 %                 
(= 297/269 - 1) when the shear span reduces by 25 %. 
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Fig. 13 Crack pattern for the beams shear span = L/3 using (a) FEM and (b) XFEM.

Fig. 14 Crack pattern for the beams shear span = L/4 using (a) FEM and (b) XFEM.
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6. Conclusions 

Three-dimensional reinforced concrete beam models are 
investigated using XFEM, taking into account materials 
nonlinearities using concrete damage plasticity CDP. From the 
results obtained, the following conclusions may be drawn:  
1. A fracture mechanics approach based on the XFEM can 

capture crack propagation leading to shear failure. 
2. Because of the predefined crack in XFEM, the ultimate 

loads of the beams are less than the load values of nonlinear 
FEM by 1 % to 5 %. 

3. The numerical analysis shows that the first crack distance 
for all the beams with different depths is approximately 
290 mm from the support, but the load value associated 
with the first crack is different for each beam. The ratios of 
the first crack load to the ultimate load are in the range of 
0.25 to 0.46. 

4. The loading condition is the significant parameter that 
affects the shear failure mechanism in reinforced concrete 
beams. The failure loads and consequently the shear 
strength of the examined beams decreased with increasing 
the shear span. The increase in shear strength is about        
10 % when the shear span is reduced by 25 %. 

5. The load ratios which are defined as first crack load/ 
ultimate load for FEM and XFEM are in the range            
(0.4 - 0.49) and (0.38 - 0.47), respectively for reinforced 
concrete beams with shear span L/3. While the load ratios 
for reinforced concrete beams with shear span L/4, are in 
the range (0.44 - 0.64) and (0.41 - 0.63) for FEM and 
XFEM respectively. 
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