Electrical Circuits

First Year

First Course 2023/2024

Muwaffaq Jameel Salih

الوحدات	عية	ت الأسبوء	الساعاد	السنة الأولى – الفصل الأول	لغة التدريس الانكليزية	اسم المادة الدوائر الكهربائية
	م	ع	ن			1
4	4	2	2			

تفاصيل المفردات		الأسبوع
نظام الوحدات المستخدم في الكهرباء ووحدات القياس لكل مادة (أجزائها ومضاعفاتها)	•	الأول
تطبيقات رياضية لتحويل القيم باستخدام الوحدات.		
تعريف الوحدات الأساسية الفولتية والتيار والمقاومة	•	
مكونات الدائرة الكهربائية	•	
قانون اوم	•	
العوامل المؤثرة على قيمة المقاومة	•	
المقاومة النوعية للمادة الموصلة والعازلة.	•	
التيار المستمر وتشمل:	دوائر	الثاني
ربط المقاومات على التوالي مع أمثلة	•	<u>"</u>
ربط المقاومات على التوازي مع أمثلة	•	
ربط مختلط للمقاومات مع أمثلة	•	
الربط ألنجمي والمثلثي (Y ∕ ∆) للمقاومات والتحويل من كل منهم إلى الآخر مع أمثلة	•	
نات على دوائر التوالي والتوازي والربط المختلط والربط النجمى والمثلثي	تطبية	الثالث
قوانين كيرشوف – تعريف قانوني كيرشوف للتيار والفولتية مُع حل أسئلة	•	الرابع
ماكسويل مع حل أمثلة	•	
نظرية ثيفنن – تعريف النظرية – كيفية تطبيقها في دوائر التيار المستمر	•	الخامس
نظريَّة نورتنَّ – تعريف النظريَّة – كيفية تطبيقها في دوائر التيار المستمرّ	•	
تطبيقات على نظرية ثيفنن ونورتن	•	السادس
نظرية التطابق – تعريف النظرية – خطوات تطبيقها في حل دوائر التيار المستمر التي	•	السابع
تحوّي على أكثر من مصدر واحد – حل أمثلة		
تعريف مصدر التيار ومصدر الفولتية (موزع القدرة المستمرة) وكيفية التحويل من	•	
احدهما إلى الأخر		
نظرية نقل أعظم قدرة ممكنة – تعريف النظرية واشتقاق العلاقات الخاصة بها – أمثلة	•	
تطبيقية		
ت المتناوبة ويشمل	الكميا	الثامن
تعريفها خصائص التيار المتناوب – كيفية توليد التيار المتناوب ورسم الموجة له	•	
والعلاقات الخاصة به		
تُعريف القيمة الفعالة (RMS) ومتوسط القيمة والعلاقات الخاصة بها لإيجاد عامل	•	
التكوين وعامل القيمة لْإشكالْ مُوجَّية عنير منتظمة مع أمثلة تطبيقيةٌ		

• الكميات المتناوية المتجهة	التاسع
• تعريفها النقثيل ألطوري والاتجاهي لها	المسع
• تعريفه الطور وكيفية إيجادها • زاوية الطور وكيفية إيجادها	
la de la companya de	
 إيجاد محصلة الكميات المتجهة ويشمل الضرب والقسمة والجمع والطرح – مع أمثلة تطبيقية 	
حراسة تأثير التيار المتناوب على	العاشر
• دائرة تحتوى على مقاومة فقط • دائرة تحتوى على مقاومة فقط	Jaran
• دائرة تحتوى على محاثة نقية فقط	
و دائرة تحتوي على سعة نقية فقط • دائرة تحتوي على سعة نقية فقط	
ريــــــــــــــــــــــــــــــــــــ	
ءً". تأثير التيار المتناوب على دائرة تحتوي على	الحادي
	عشر
 دائرة تحتوى على مقاومة ومتسعة على التوالى 	
 دائرة تحتوي على مقاومة ومحاثة ومتسعة على التوالى 	
• أمثلة تطبيقية	
تأثير التيار المتناوب على دائرة تحتوي على	الثاني
• مقاومة ومحاثة على التوازي .	عشر
 مقاومة ومتسعة على التوازي 	
 مقاومة ومحاثة ومتسعة على التوازي 	
 إيجاد العلاقة بين التيار والفولتية في الحالات الثلاثة – زاوية الطور – وتعريفها وكيفية 	
ٳۑڿادها	
 إيجاد الممانعة – السماحية مع أمثلة تطبيقية 	
استخدام التوصيف 1-7 (J-Operator) أو العامل المركب لإيجاد	الثالث
• الممانعة الكلية	عشر
• والسماحية الكلية	
• والتيار والفولتية	
 وزاوية الطور لدوائر ربط الممانعات على التوالي وعلى التوازي مع 	
• حل أمثلة	
دوائر الرنين ويشمل	الرابع
• دائرة رنين التوالي	عشر
 تعریف حالة الرنین وکیفیة الوصول إلیها 	
 حساب التيار والفولتية والممانعة وزاوية التردد عند الرنين 	
• إيجاد عرض الحزمة	
• إيجاد عامل الجودة	
 ورسم العلاقة بين المفاعلة الحثية والمفاعلة السعوية مع التردد 	
• حل أمثلة	

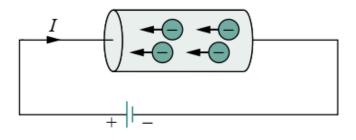
رة رنين التوازي	الخامس داأ
• تعريفها ۛ	عشر
 حساب التيار والفولتية والممانعة وزاوية الممانعة وزاوية الطور وتردد الرنين 	
• إيجاد عرض الحزمة	
 ورسم العلاقات البيانية مع التردد 	
• إيجاد عامل الجودة	
• حل أمثلة	

References

• C. K. Alexander and M. N. O. Sadiku, fundamental of electrical circuits,3rd edition, McGraw-Hill

SYSTEMS OF UNITS

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

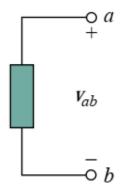

Multiplier	Prefix	Symbo
1018	exa	Е
10^{15}	peta	P
10 ¹²	tera	T
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10-1	deci	d
10 ⁻²	centi	c
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	p
10-15	femto	f
10-18	atto	a

CHARGE AND CURRENT

Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).

- The coulomb is a large unit for charges. In 1 C of charge, there are $1/(1.602 \times 10^{-19}) = 6.24 \times 10^{18}$ electrons. Thus realistic or laboratory values of charges are on the order of pC, nC, or μ C.
- According to experimental observations, the only charges that occur in nature are integral multiples of the electronic charge $e = -1.602 \times 10^{-19}$ C.
- The *law of conservation of charge* states that charge can neither be created nor destroyed, only transferred. Thus the algebraic sum of the electric charges in a system does not change.

Electric current is the time rate of change of charge, measured in amperes (A).

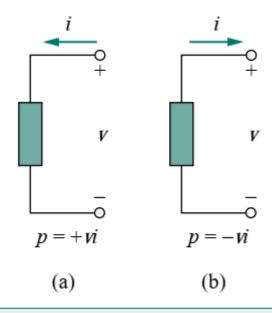

Battery

A direct current (dc) is a current that remains constant with time.

An alternating current (ac) is a current that varies sinusoidally with time.

VOLTAGE

Voltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts (V).



POWER AND ENERGY

Power is the time rate of expending or absorbing energy, measured in watts (W).

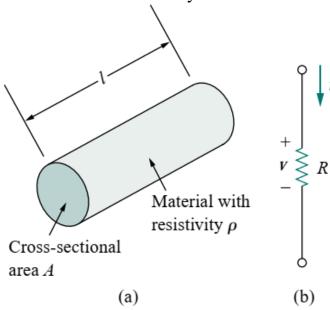
$$p = vi$$

Passive sign convention is satisfied when the current enters through the positive terminal of an element and p = +vi. If the current enters through the negative terminal, p = -vi.

Energy is the capacity to do work, measured in joules (J).

The electric power utility companies measure energy in watt-hours (Wh), where 1 Wh = 3,600 J

The Resistance and Resistivity


The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω) .

- materials in general have a characteristic behavior of resisting the flow of electric charge.
- This physical property, or ability to resist current, is known as *resistance* and is represented by the symbol *R*.

• The resistance of any material with a uniform cross-sectional area A depends on A and its length ℓ ,

$$R = \rho \frac{\ell}{A}$$

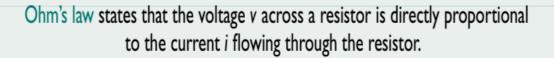
where $\boldsymbol{\rho}$ is known as the resistivity of the material in ohm-meters.

Material	Resistivity $(\Omega \cdot m)$	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10^{10}	Insulator
Mica	5×10^{11}	Insulator
Glass	10^{12}	Insulator
Teflon	3×10^{12}	Insulator

Ex: Most homes use solid copper wire having a diameter of 1.63 mm to provide electrical distribution to outlets and light sockets. Determine the resistance of 75 meters of a solid copper wire having the above diameter. Solution:

$$A = \frac{\pi d^2}{4}$$

$$= \frac{\pi (1.63 \times 10^{-3} \text{ m})^2}{4}$$


$$= 2.09 \times 10^{-6} \text{ m}^2$$

$$R = \frac{\rho \ell}{A}$$

$$= \frac{(1.723 \times 10^{-8} \,\Omega\text{-m})(75 \,\text{m})}{2.09 \times 10^{-6} \,\text{m}^2}$$

$$= 0.619 \,\Omega$$

Ohm's law

$$v \propto i$$

$$R = \frac{v}{i}$$

Ex: An electric iron draws 2 A at 120 V. Find its resistance Solution:

$$R = \frac{v}{i} = \frac{120}{2} = 60 \Omega$$

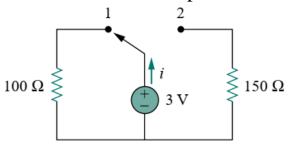
Ex: In the circuit shown, calculate the current i, and the power p. Solution:

$$i = \frac{v}{R} = \frac{30}{5 \times 10^3} = 6 \text{ mA}$$

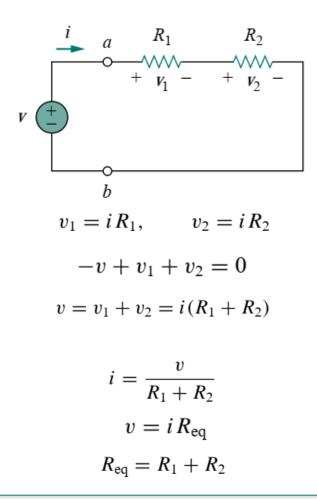
$$p = vi = 30(6 \times 10^{-3}) = 180 \text{ mW}$$

or

$$p = i^2 R = (6 \times 10^{-3})^2 5 \times 10^3 = 180 \text{ mW}$$

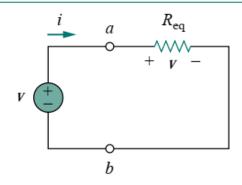

Review Questions

Ex: Find the resistance of a 100-m long tungsten wire which has a circular cross-section with a diameter of 0.1 mm. the resistivity of tungsten is $5.485~10^8\,\Omega$.m Answer: 698 $\,\Omega$

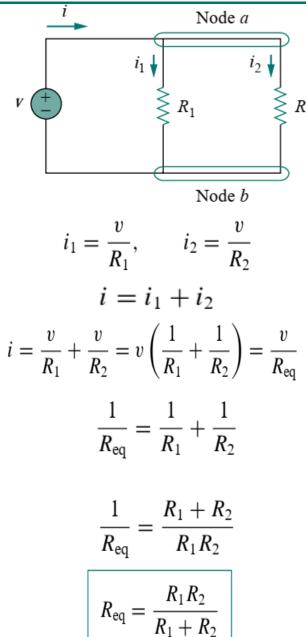

Ex: The essential component of a toaster is an electrical element (a resistor) that converts electrical energy to heat energy. How much current is drawn by a toaster with resistance 12 Ω at 110 V? Answer: 9.167 A.

Ex: (a) Calculate current i in Fig. below when the switch is in position 1.

(b) Find the current when the switch is in position 2



SERIES RESISTORS AND VOLTAGE DIVISION

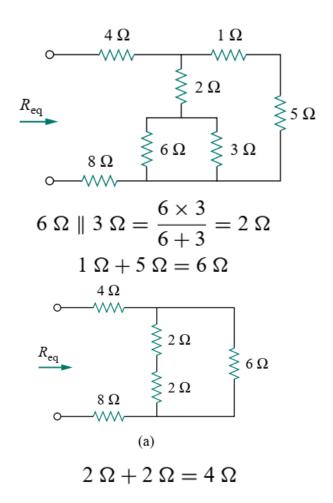

The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.

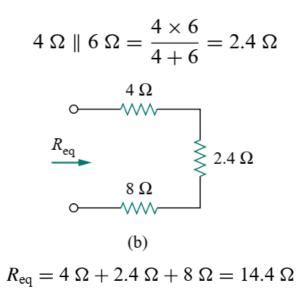
$$R_{\text{eq}} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

$$v_1 = \frac{R_1}{R_1 + R_2} v, \qquad v_2 = \frac{R_2}{R_1 + R_2} v$$

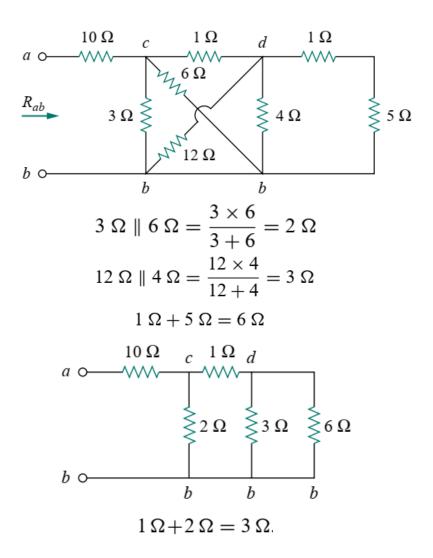
PARALLEL RESISTORS AND CURRENT DIVISION

The equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum.

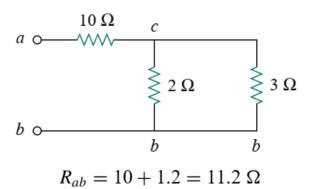

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

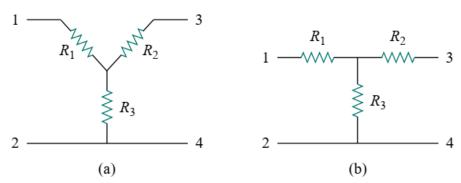

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

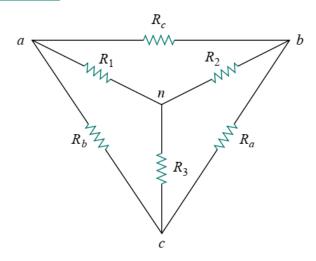

Ex: Find $R_{\rm eq}$ for the circuit shown below.

Solution:




Ex : Calculate the equivalent resistance $R_{ab.}$ Solution:

$$2 \Omega \parallel 3 \Omega = \frac{2 \times 3}{2+3} = 1.2 \Omega$$



WYE-DELTA TRANSFORMATIONS

Two forms of the same network: (a) Y, (b) T.

Delta to Wye Conversion

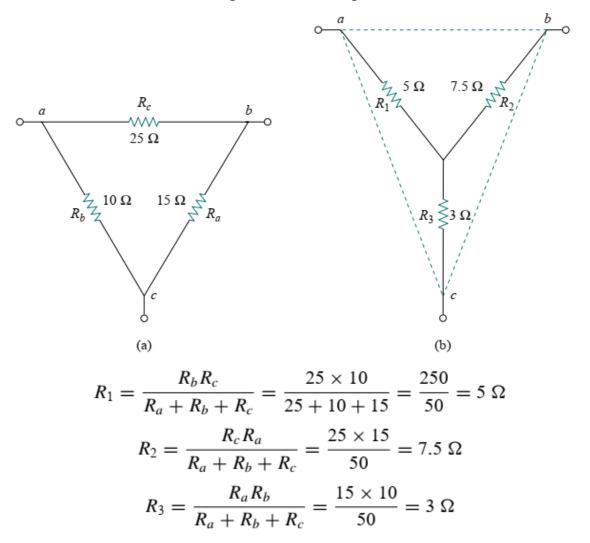
$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

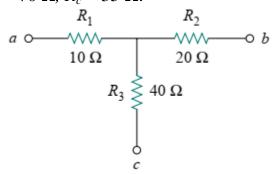
Each resistor in the Y network is the product of the resistors in the two adjacent Δ branches, divided by the sum of the three Δ resistors.

Wye to Delta Conversion

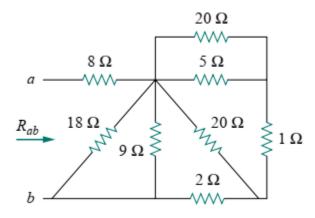

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$


Each resistor in the Δ network is the sum of all possible products of Y resistors taken two at a time, divided by the opposite Y resistor.

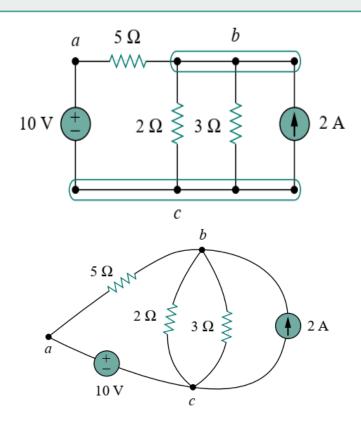
Ex: Convert the Δ network in Fig. below to an equivalent Y network.


Review Questions

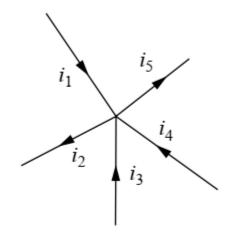
1. Transform the wye network in Fig. below to a delta network. **Answer:** $R_a = 140\Omega$, $R_b = 70 \Omega$, $R_c = 35 \Omega$.

2. Find R_{ab} for the circuit in Fig. below.

Answer: 11Ω .



NODES, BRANCHES, AND LOOPS


A branch represents a single element such as a voltage source or a resistor.

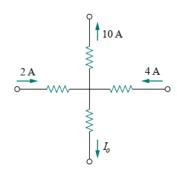
A node is the point of connection between two or more branches.

A loop is any closed path in a circuit.

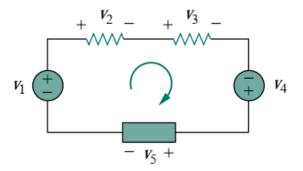
KIRCHHOFF'S LAWS Kirchhoff's current law (KCL)

Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

$$\sum_{n=1}^{N} i_n = 0$$


$$i_1 + (-i_2) + i_3 + i_4 + (-i_5) = 0$$

$$i_1 + i_3 + i_4 = i_2 + i_5$$

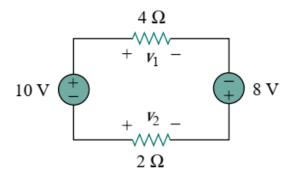

The sum of the currents entering a node is equal to the sum of the currents leaving the node.

Ex: Find the current $I_{\rm o}\,$

Solution:

Kirchhoff's voltage law (KVL)

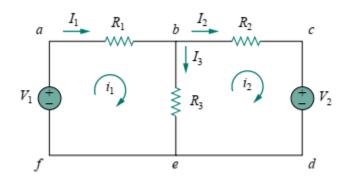
Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.


$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$
$$v_2 + v_3 + v_5 = v_1 + v_4$$

Sum of voltage drops = Sum of voltage rises

Ex: Find v_1 and v_2 in the circuit

Answer: 12 V, -6 V


Solution:

METHODS OF ANALYSIS

Maxwell's loop current analysis (Mesh Analysis)

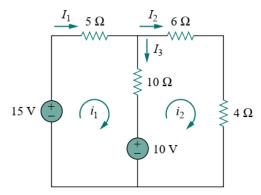
A mesh is a loop which does not contain any other loops within it.

Steps to Determine Mesh Currents:

- 1. Assign mesh currents i_1, i_2, \ldots, i_n to the *n* meshes.
- 2. Apply KVL to each of the *n* meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting *n* simultaneous equations to get the mesh currents.

$$-V_1 + R_1 i_1 + R_3 (i_1 - i_2) = 0$$

$$(R_1 + R_3) i_1 - R_3 i_2 = V_1$$


$$R_2 i_2 + V_2 + R_3 (i_2 - i_1) = 0$$

or

$$-R_3i_1 + (R_2 + R_3)i_2 = -V_2$$

$$\begin{bmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ -V_2 \end{bmatrix}$$

Ex: For the circuit below, find the branch currents *I*1, *I*2, and *I*3 using mesh analysis.

Solution:

We first obtain the mesh currents using KVL. For mesh 1,

$$-15 + 5i_1 + 10(i_1 - i_2) + 10 = 0$$

or

$$3i_1 - 2i_2 = 1 \tag{3.5.1}$$

For mesh 2,

$$6i_2 + 4i_2 + 10(i_2 - i_1) - 10 = 0$$

or

$$i_1 = 2i_2 - 1 \tag{3.5.2}$$

METHOD Using the substitution method, we substitute Eq. (3.5.2) into Eq. (3.5.1), and write

$$6i_2 - 3 - 2i_2 = 1 \qquad \Longrightarrow \qquad i_2 = 1 \text{ A}$$

From Eq. (3.5.2), $i_1 = 2i_2 - 1 = 2 - 1 = 1$ A. Thus,

$$I_1 = i_1 = 1 \text{ A}, \qquad I_2 = i_2 = 1 \text{ A}, \qquad I_3 = i_1 - i_2 = 0$$

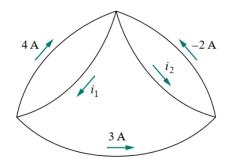
METHOD 2 To use Cramer's rule, we cast Eqs. (3.5.1) and (3.5.2) in matrix form as

$$\begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

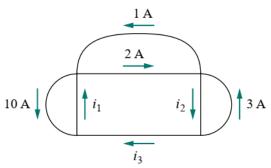
We obtain the determinants

$$\Delta = \begin{vmatrix} 3 & -2 \\ -1 & 2 \end{vmatrix} = 6 - 2 = 4$$

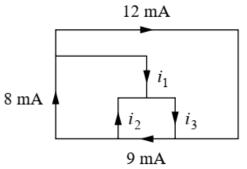
$$\Delta_1 = \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} = 2 + 2 = 4, \qquad \Delta_2 = \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} = 3 + 1 = 4$$

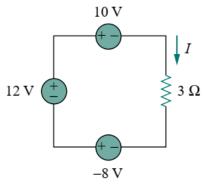

Thus,

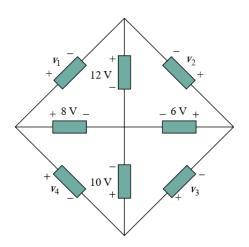
$$i_1 = \frac{\Delta_1}{\Lambda} = 1 \text{ A}, \qquad i_2 = \frac{\Delta_2}{\Lambda} = 1 \text{ A}$$

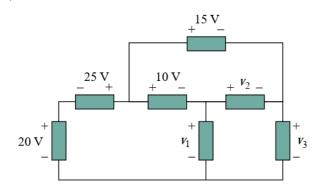

as before.

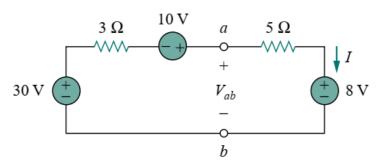
Review Questions


Ex: Determine i1 and i2 in the circuit

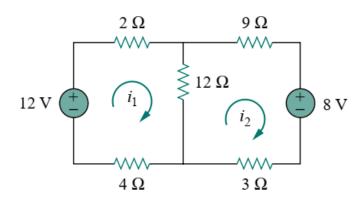

Ex: Find i1, i2, and i3 in the circuit


Ex: Use KCL to obtain currents i1, i2, and i3 in the circuit shown


Ex: From the circuit in Fig. 2.80, find *I*, the power dissipated by the resistor, and the power supplied by each source.


Ex: Determine v1 through v4 in the circuit

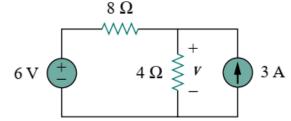
Ex: In the circuit in Fig. 2.76, obtain v1, v2, and v3.



Ex: Find *I* and *Vab* in the circuit

Ex: Calculate the mesh currents i1 and i2 in the circuit below.

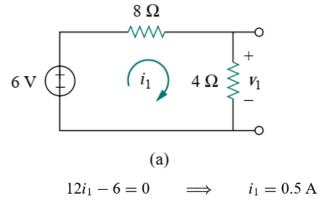
Answer: i1 = 2/3 A, i2 = 0 A


CIRCUIT THEOREMS SUPERPOSITION

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

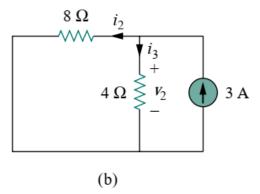
Steps to Apply Superposition Principle:

- Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
- 2. Repeat step 1 for each of the other independent sources.
- 3. Find the total contribution by adding algebraically all the contributions due to the independent sources.


Ex: Use the superposition theorem to find v in the circuit below.

Solution:

Since there are two sources, let v = v1 + v2 where v1 and v2 are the contributions due to the 6-V voltage source and the 3-A current source, respectively.

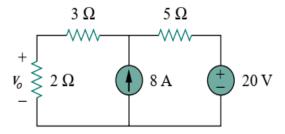

To obtain v1, we set the current source to zero

Thus,

$$v_1 = 4i_1 = 2 \text{ V}$$

we set the voltage source to zero, Using current division,

$$i_3 = \frac{8}{4+8}(3) = 2 \,\mathrm{A}$$


Hence,

$$v_2 = 4i_3 = 8 \text{ V}$$

$$v = v_1 + v_2 = 2 + 8 = 10 \text{ V}$$

Ex: Using the superposition theorem, find *vo* in the circuit below.

Answer: 12 V.

