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Abstract: Multiple input multiple outputs-Nonorthogonal multiple access (MIMO-NOMA), presenting a potential technology to improve 

system performance and energy efficiency. Nevertheless, the system's effectiveness is hampered by the impact of swiftly changing channel 

conditions and intricate spatial structures, restricting its broader applicability. Deep learning plays a crucial role by helping MIMO-NOMA 

overcome challenges, improve Energy efficiency, and increase capacity and overall system performance in wireless communication 

networks. This research paper proposes a deep learning-based Multilayer Perceptron-Convolution neural network (MLP-CNN) framework. 

The framework optimizes the data rate and energy efficiency by addressing the power allocation problems. It can be utilized with multiple 

convolutional and hidden layers, trained using specific algorithms to solve power allocation problems. Simulation results demonstrate that 

the proposed framework improves power allocation, overall data rates, and Energy efficiency by around 15% compared to traditional deep 

neural network (DNN) algorithms, methods and strategies. 
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1. Introduction 

Nonorthogonal multiple access (NOMA) method is 

presented as a tool to optimize the utilization of the available 

spectrum for a more extensive user with varying power 

levels [1] in 5G systems, an approach that involves 

assigning greater transmission power to users experiencing 

relatively poor channels [2]. This strategy aims to balance 

system capacity and user fairness within a single cell served 

by a base station  [3]. The term for this is power domain 

multiple access in the broadcasting region. The NOMA 

technique implements superposition coding, and in the 

receiving area, Signal to Interference Cancellation (SIC) 

allows users to share available resources [4]. Its purpose is 

to simultaneously transmit multiple messages by encoding 

them into single layers and scheduling them over the same 

transmission period and frequency range [5]. 

Conversely, at the receiving end, Signal to interference 

cancellation manages user information [6]. In this 

procedure, users with more substantial channel gains 

retrieve information from users with weaker channel gains. 

As a result, intra-cluster interference and co-channel 

interference are efficiently mitigated [7]. However, there are 

various challenges to the successful implementation of 

NOMA. Its necessarily faces such challenges that require a 

significantly higher rate of computational Power to execute 

multiple algorithms, especially in situations with more 

traffic at high data rates [8]. The optimization of Power in 

NOMA poses challenges, especially when user equipment 

is relocated within the network. The signal at the receiving 

end becomes more susceptible to errors, including potential 

cancellations [9]. Therefore, NOMA must be implemented 

using specific techniques, such as Multiple input multiple 

outputs (MIMO) or a coding scheme [10], to increase 

consistency and reduce decoding errors. MIMO has the 

advantage of providing additional degrees of freedom when 

applied to NOMA; hence, a MIMO-based NOMA system is 

discussed in this work [11]. The applications of Multiple 

input multiple outputs-Nonorthogonal multiple access 

(MIMO-NOMA) have attracted great interest because 

MIMO provides excellent flexibility for the improvement of 

performance [12]. Moreover, MIMO-NOMA stands out as 

a promising option to boost spectral efficiency further and 

minimize communication transmission delays. It has 

garnered significant interest for its potential performance 

improvements, leading to the proposal of various schemes 

based on MIMO-NOMA [13]. 

To increase spectrum and energy efficiency, the author 

presents millimetre-wave (mmWave) transmission, a new 

technology that combines the NOMA approach with 

beamspace MIMO. To mitigate inter-cell interference and 

enhance throughputs for cell-edge users, investigated a 

downlink multi-cell MIMO-NOMA system, optimizing 

coordinated beamforming methods using interference 

alignment jointly at two base stations. In a related context, 

the authors introduced user clustering for a mm-wave 

NOMA system, restricting NOMA application to users 

within the same cluster, while MIMO detection handled 

inter-cluster interference [14]. 

An effective MIMO-NOMA strategy involves designing 
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precoders and equalizers jointly, exhibiting superior power 

consumption to orthogonal multiple access (OMA) and 

signal alignment NOMA. Theoretical analyses show that in 

the 4G context, MIMO-NOMA systems offer higher 

capacity and data rates than multiple input multiple outputs-

orthogonal multiple access (MIMO-OMA). Previous 

research explored power allocation strategies, with  

investigating sum data rates in a downlink MIMO-NOMA 

system [15]. The power-splitting method in MIMO-NOMA 

achieves lower power consumption for any arbitrarily 

chosen rate pair compared to MIMO-OMA [16]. A security 

model-based opportunistic NOMA framework was 

proposed to enhance network throughput and security in 

MIMO-NOMA, assigning distinct security levels to the base 

station and users. Additionally, [17] introduced a resource 

allocation approach, sequentially addressing Power and sub-

carrier allocation, significantly improving spectrum and 

power efficiency in MIMO-NOMA. Moreover, by 

harnessing the MIMO-NOMA system, [18] proposed a 

dynamic arrangement of receive antennas at users into 

multiple clusters. The authors developed power allocation 

solutions to optimize the overall cell capacity, subject to the 

condition that the number of clusters should not surpass the 

number of transmit antennas at the base station. SIC requires 

precise Channel State Information (CSI) for each user, and 

the effectiveness of MIMO heavily relies on the accuracy of 

CSI. Existing power allocation methods hinge on perfect 

channel, but obtaining accurate channel in MIMO-NOMA 

systems poses significant challenges due to their inherently 

complex nature. The effectiveness of current power 

allocation strategies has diminished, emphasizing the 

importance of sparse information for channel estimation and 

precoding in MIMO. Power allocation challenges in 

MIMO-NOMA, aimed at maximizing data rates, with 

previous methods offering suboptimal solutions. While 

deep learning in wireless communication is relatively new, 

promising studies have shown improvements in traffic 

control systems, predicting traffic load, and addressing 

resource allocation challenges in unmanned aircraft systems 

compared to ground stations in dynamic situations. 

This study presents extensive investigations and introduces 

a deep learning-driven framework to optimize MIMO-

NOMA systems' total data rate and energy efficiency. The 

aim is to integrate deep learning algorithms seamlessly into 

MIMO-NOMA configurations to achieve optimal power 

allocation and enhance energy efficiency. The introduced 

framework ensures comprehensive performance 

optimization from end to end. To summarize, the main 

contributions of this paper are as follows:  

• In this article, an effective deep learning algorithm is 

developed, combining a multilayer perceptron with a 

convolutional neural network to model the MIMO-

NOMA system. This research employs specific 

activation functions across meticulously designed 

hidden and convolutional layers. Furthermore, the 

proposed framework introduces an efficient power 

allocation approach to enhance energy efficiency 

performance. 

• This paper proposes a new dataset based on the 

MATLAB 5G simulator, which considers a MIMO-

NOMA scenario between transmitter and receiver. A 

new dataset should contain a channel vector, precoding 

matrix, and power allocation factor based on the 

proposed scenario. These parameters should be 

inputted to the neural network.   

• Comprehensive performance analyses are conducted 

to assess the effectiveness of the proposed Multilayer 

Perceptron-Convolution neural network (MLP-CNN) 

framework in terms of Power and energy efficiency. 

The results demonstrate that the proposed framework 

surpasses existing schemes, providing compelling 

evidence for the efficacy of the deep learning-based 

MIMO-NOMA system. 

The subsequent sections of this paper are structured as 

follows: Section II outlines the development of a standard 

MIMO-NOMA system. Section III formulates the power 

allocation problem and introduces a deep neural network 

(DNN) framework to address its high complexity. 

Additionally, the authors detail a DNN-based method for 

enhancing the performance of MIMO-NOMA in terms of 

Power and energy efficiency. Section IV presents 

simulation results, while Section V provides analysis. 

Finally, Section VI concludes the paper.  

2. Related Work  

If The use of structured MIMO-NOMA systems proves 

beneficial in improving energy efficiency. The technology 

facilitates non-orthogonal sharing of time-frequency 

resources among multiple users, leading to increased energy 

efficiency and enhanced system capacity compared to 

conventional OMA schemes. This section will discuss 

related works that utilize MIMO and NOMA 

communication systems to improve energy efficiency and 

sum data rate. A new approach aims to maximize the reward 

signal to optimize the data rates for individual users. The 

study evaluates various metrics such as energy efficiency, 

minimum data, and sum rates by varying batch sizes and 

learning rates [19]. The results indicate that a batch size of 

40 and a learning rate 0.001 yields the best performance. 

The proposed deep learning-based algorithm performs 

better than non-deep learning methods across all test 

scenarios [20]. Deep Learning methods introduce a power 

allocation strategy to maximize the cumulative system rate 

in a downlink MIMO-NOMA setup featuring imperfect 

SIC. An effective detection algorithm is employed to 

identify the optimal power, a power allocation approach is 

suggested to improve the overall system rate. The proposed 
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technique leverages deep learning and exhaustive search to 

anticipate the optimal factors for power allocation. 

The study of [21] tackles the challenging non-convex 

optimization of power allocation in mmWave NOMA 

systems, aiming to maximize the sum rate while adhering to 

power constraints and individual user quality of service 

requirements. An online k-means deep learning protocol is 

proposed for dynamic user grouping, managing 

computational complexity in environments with growing 

users. The research article [22] introduces federated 

learning within a NOMA framework to optimize energy 

efficiency and sum rate. It decentralizes data while training 

a model centrally, benefiting bandwidth-constrained 

wireless communication systems. Graph theory addresses 

power allocation optimization, incorporating NOMA to 

enhance accuracy and reduce communication latency in the 

downlink/uplink scenario involving one parameter server 

and multiple users. The review [23] analyses the evolution 

and significance of deep learning assisted communication, 

comparing it to MIMO, NOMA, and mmWave 

technologies. It addresses challenges, opportunities, and 

research directions in deep learning, emphasizing improved 

spectral efficiency, system capacity, and channel state 

estimation in deep learning-assisted NOMA systems. The 

study evaluates deep learning performance in mmWave 

communication, focusing on ultra-high-power consumption 

and limited link gains in deep learning-aided MIMO 

systems. However, it lacks a detailed discussion of energy 

efficiency challenges. The authors of [24] discuss NOMA's 

role in communication systems, detailing advantages and 

integrations, but fall short of thoroughly addressing energy 

models, power consumption aspects, open research 

challenges, and future directions for further investigations. 

The author examines downlink NOMA in a k-user multi-

cell network, focusing on scenarios with two users in a 

single cell. The paper explores NOMA fundamentals, 

emphasizing its contributions to energy efficiency. Key 

aspects such as CSI, power allocation factors, and inter-

channel interference are extensively covered. The analysis 

evaluates the potential and limitations of Machine Learning 

and Deep Learning in NOMA systems, aiming to clarify 

misconceptions about its efficacy in 5G and beyond. While 

addressing critical questions, the paper lacks an in-depth 

exploration of open research issues and future directions, 

suggesting a need for further investigation in subsequent 

studies [25]. 

As a result, this study successfully addresses various 

limitations and challenges by proposing a new efficient 

optimization technique that combines MLP with CNN 

integrated into the MIMO-NOMA system. The new method 

tackles power allocation and non-convex problems, 

improving overall system energy efficiency and data rate. 

Notably, the proposed approach demonstrates excellent 

performance based on training and validation results, as 

evidenced by minimum mean square error (MSE) and loss 

ratio metrics.  

3. System Model 

Use As depicted in Fig. 1, this investigation examines a 

standard downlink MIMO-NOMA configuration featuring a 

single base station equipped with a uniform linear array 

comprising number of base station antennas M and multi-

antenna users D. The downlink channel is subject to 

Rayleigh fading. In this scenario, each user possesses 

number of receive antennas Nr, and it is assumed that the 

base station lacks information about the links of individual 

users. The users are randomly distributed into M clusters, 

each comprising number of users K. The multiplexing gain 

is capped at M when the number of antennas at the base 

station is M. In other words, M represents the maximum 

number of clusters that can be accommodated without 

encountering inter-cluster interference. Consequently, it can 

be serves as the critical parameter under investigation in this 

study. To make the complex problem of allocating 

beamforming vectors easier to understand., this paper 

assumes Nr ≥ M. In the context of 5G wireless networks, 

small cells are anticipated to be deployed in an ultra-dense 

manner. Low-power and cost-effective small-cell base 

stations will be deployed. Consequently, it is reasonable to 

assume that such low-power base station may be equipped 

with equal or even fewer antennas than user equipment.  

 

Fig. 1. Proposed MIMO-NOMA System Model. 

This leads to the expression of the transmitted signal from 

the base station as follows: 

x Ps= , (1) 

Suppose that P is the precoding matrix 𝑀 ×  𝑀, and 𝑠 can 

be formulated as:  
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Here, 𝑠𝑚,𝑘~𝒞𝒩(0, 𝜖) is the signal carrying information 

transmitted to the k-th user in the m-th cluster, in which ε is 
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the transmit Power per symbol. Where the power allocation 

coefficient for NOMA is denoted by 𝛽𝑖,𝑗. If we suppose that 

the channel matrix 𝐻𝑚,𝑘 ∈  ℂ𝑁𝑟×𝑀 incorporating distance-

dependent path loss effects for the k-th user in the m-th 

cluster. Specifically, concerning the initial cluster, the signal 

received by the k-th user is expressed as follows: 

1, 1, 1,k k ky H Ps z= + , (3) 

here 𝑧 ~𝒞𝒩(0, 𝜎2 𝐼𝑁𝑟
) is Additive White Gaussian Noise 

(AWGN). This research can assume that the power 

allocation coefficients are arranged in a specific order 

without sacrificing any essential characteristics as 𝛽1.1 ≤

𝛽1.2 ≤ ⋯ ≤ 𝛽1.𝐾, and the sequence of channel gains can be 

arranged as follows: 

2 2 2

1, 1, 1 1, 1 1, 1 1 1,1 1,1 1

H H H

K K K Kv H p v H p v H p− −    
  

(4) 

 

In this context, 𝑣1,𝐾 the detection vector corresponds to the 

k-th user, here k-th user and 𝑝𝑖  Represents the 𝑖 − 𝑡ℎ column 

of the precoding matrix P. In the context of MIMO-NOMA, 

the conventional maximum ratio combining detection 

vector is consistently employed to leverage the degrees of 

freedom inherent in the MIMO system. With careful design 

of the detection and precoding matrices, optimal solutions 

can be attained through SIC, as the MIMO-NOMA system 

can be simplified to the single input single output channel. 

Assuming P is fixed, the detection vector needs to adhere to 

the following constraint: 

1, ,1 0H

k m kv h = , (5) 

where ℎ𝑚,1𝑘 is the 𝑚 − 𝑡ℎ column of 𝐻1,𝑘 and then the 

detection vector at 𝑘 − 𝑡ℎ is 𝑣1,𝑘 can be obtained as: 

1, 1, 1,k k kv U n= , (6) 

In this context, 𝑈1,𝑘 encompasses all the left singular vectors 

of 𝐻1,𝑘where 𝐻1,𝑘 = [ℎ2,1𝐾 , ℎ3,1𝑘 … ℎ𝑀,1𝑘] is a submatrix of 

𝐻1,𝑘  obtained by removing one column with zero singular 

values [26]. Following the maximum ratio combining 

method, 𝑛1,𝑘 is a normalized vector expressed as: 

1, 1,1

1,

1, 1,1
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k H
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U h
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Utilizing the principle of signal to interference cancellation, 

users with superior channel conditions can decode the users 

with more favourable channel conditions can decode the 

messages of users experiencing less fortunate conditions 

and subsequently decode their messages. Conversely, users 

with less good channel conditions can only decode their 

information. The derivation of the signal to interference plus 

noise ratio for the primary user in the initial cluster is 

expressed as follows: 

2
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(8) 

Here, η denotes the signal to noise ratio (SNR) of the 

transmitted signal. Under the assumption of perfect SIC, the 

signal to interference plus noise ratio for the k-th user in the 

first cluster is calculated as follows: 

2
2
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This study employs a MIMO-NOMA framework with deep 

learning techniques, including MLP-CNN, to enhance 

system performance. By extracting valuable features, these 

algorithms optimize power allocation, interference 

management, and data rate maximization. The deep 

learning-based framework adapts to diverse environmental 

conditions and channel characteristics, ensuring self-

optimization and optimal performance in dynamic 

scenarios, which is essential for modern wireless 

communication systems. 

4. Deep Learning-Based MIMO-NOMA Systems 

This study integrates a convolutional neural network (CNN) 

into the MIMO-NOMA system for optimizing sum data rate 

and energy efficiency. The CNN, deployed at the base 

station, addresses power allocation optimization by learning 

from channel links and user characteristics. The training 

process ensures comprehensive coverage of user 

information and channel conditions. Advanced algorithms 

within the deep learning framework further optimize the 

sum data rate and enhance the energy efficiency of the 

MIMO-NOMA system. 

4.1. Problem Formulation 

This system aims to enhance the overall data rate while 

improving energy efficiency. To provide more detail, assess 

the data rate for the k-th user in the primary cluster using the 

subsequent expression: 

( )1, 2 1,log 1 k

k kR = + , (10) 

Consequently, the data rates for users in the remaining 

clusters can be determined similarly. The achievable sum 

data rate for the MIMO-NOMA system can be expressed as 

follows: 

,

1 1

M K

sum m k

m k

R R
= =

= , (11) 

The total data rate, represented as sum data rate 𝑅𝑠𝑢𝑚 is 

impacted by both the output precoder 𝑝𝑚 and the power 

allocation coefficients {𝛽𝑚,𝑘}, Hence, formulate an 

optimization problem to address this issue, aiming to 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1738–1750  |  1742 

maximize the sum data rate: 
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, ,
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The term 𝑅min signifies the minimum data rate assigned to 

each user in each cluster. Subsequently, the proposed CNN 

framework was applied to address the problem (9). In this 

context, C1 refers to the overall transmit power constraint, 

where  𝑝tr stands for the maximum total transmit Power. 

Constraints C2 and C3 correspond to the minimum data rate, 

and minimum allocated Power, respectively. Moreover, the 

condition about the order of successive interference 

cancellation decoding is articulated as follows: 

2 2

, , , 1 , 1
,

0,

1,

H H

m k m k m k m k
m k

v H v H
v

otherwise

+ +
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= 


,  

The equation states that the binary variable. The SIC 

decoding order constraint 𝑣𝑚,𝑘 Determines whether the k-th 

user in the m-th cluster performs SIC or not. A value of "1" 

indicates signal, while "0" signifies no signal. It is important 

to note that the optimization problem (12) contains 

continuous and combinatorial variables, making it a non-

convex problem. The brute-force search method is 

impractical due to its high complexity, rendering it 

unsuitable for solving the problem stated in equation (12). 

On the other hand, deep learning has demonstrated its 

potential to approximate complex problems by utilizing 

networks with sufficient neurons and hidden layers. 

Therefore, deep learning becomes an attractive approach to 

address the optimization problem mentioned in equation 

(12). 

 

Fig. 2. MLP-CNN proposed framework.

 

4.2. Proposed Convolutional Neural Network 

Optimization Model 

This section introduces an efficient optimization model 

named the MLP-CNN combination, leveraging the strengths 

of both models to enhance energy efficiency in MIMO-

NOMA systems. Based on the universal approximation 

theorem, a DNN with multiple hidden layers is well-suited 

for capturing the statistics of MIMO-NOMA systems, 

addressing non-convex and nonlinear problems. The 

proposed combination utilizes the MLP technique to 

approximate continuous functions effectively and the robust 

CNN for complex channel estimation, which is particularly 

crucial for performing cancellation of signal in MIMO-

NOMA systems.This research focuses on power allocation, 

a crucial aspect in advancing wireless communications and 

enhancing the energy efficiency of the MIMO-NOMA 

system. The model utilizes CSI matrices as inputs, acquired 

through pilot signal transmissions and channel estimation 

techniques. Convolutional layers capture spatial 

relationships akin to the CNN architecture. Flattened 

vectors pass through fully connected layers with varying 

sizes and activation functions. The model learns the 
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relationship between CSI matrices and optimal power 

allocation coefficients, providing outputs for different users 

and groups. The CNN framework, involves multiple hidden 

layers with various neurons and common activation 

functions like Sigmoid and Rectified Linear Unit, which are 

represented by the following equations, respectively: 

( ) ( ) ( )Re

1
, max 0,

1
sigmoid LUx

f x f x x
e−

= =
+

    

(13) 

Let x denote the argument of the Sigmoid function. 

Additionally, assuming 𝑜 and 𝑥𝑖𝑛 representing the output of 

the DNN and the input of the MIMO-NOMA system, 

respectively, the expression can be formulated as follows: 

( ) ( ) ( )1 2 1, ( ( ( )))
n n

in ino f x w f f f x
− −

= = ,   (14) 

 

The authors propose an effective CNN architecture for the 

MIMO-NOMA system, illustrated in Fig. 2. The network 

takes channel vectors and a precoding matrix as input, 

utilizing a convolutional layer with 64 filters and a Rectified 

Linear Unit, activation function. Four channels represent 

real and imaginary parts of channel vectors, precoding 

matrix, and power allocation factors. A power constraint is 

integrated into the output layer's activation function. The 

CNN optimizes precoders, treating power allocation as a 

nonlinear mapping challenge and enhancing the complex 

water-filling method. A fully connected layer adapts to 

diverse environments, reducing noise and distortion. 

Subsequent layers involve additional convolutional and 

pooling layers, followed by ten consecutive layers with 64 

filters each. A noise layer introduces artificial noise, and the 

output layer employs a modified Maxout function to enforce 

power constraints effectively. The expression for the 

modified Maxout function is as follows: 

max min(max( ,0), )T

in i trf x w i b P= +
 

, (15) 

The symbol 𝑏𝑖 Denotes the bias in the i-th iteration of the 

optimization process. Employing the MLP-CNN 

architecture approximates the problem as a continuous 

function, offering an optimized solution for the MIMO-

NOMA system. This approximation allows for efficient 

handling of the problem that leverages the strengths of both 

the MLP-CNN. 

4.3. Generation of samples and deep learning 

mechanism 

Training the CNN in a deep learning framework requires 

many transmit data sequences. Channel vector samples are 

collected through simulations in various channel 

environments (AWGN, flat fading, and frequency-selective 

fading). Training is performed individually for each 

channel, starting with AWGN and extending to other 

channels like Rayleigh, Rician, and Nakagami-m (m = 3). 

Initial training in AWGN produces a baseline model ℳ0, 

which is further refined in other channels using transfer 

learning. This approach leverages knowledge from AWGN 

training to improve the model's performance in different 

channel conditions [26]. For the MLP-CNN model, 

assembling a dataset with input samples (CSI matrices) and 

corresponding target values is crucial. Many CSI scenarios, 

representing various channel conditions, interference, and 

noise levels, must be generated or collected. Assessing the 

similarity between AWGN and new channels, like Rayleigh 

or Rician, is necessary. The model is benchmarked using the 

noise of channel after training on other channels to 

safeguard performance. Each channel sample is linked to 

target values, such as optimal power allocation coefficients 

or energy efficiency metrics. Proper division of the dataset 

into training, validation, and testing sets is vital for the 

effectiveness of the deep learning-based framework relying 

on well-defined learning strategies [28].  

A unique training process is proposed to enhance the CNN 

framework for MIMO-NOMA. It utilizes power allocation 

factors and the precoding matrix as inputs to the MLP-CNN 

model, allowing it to understand correlations and make 

predictions for optimized precoders. The CNN is trained 

offline with channel information and power allocation 

factors, followed by online learning for adaptation to new 

scenarios. Online learning involves adjusting model weights 

and biases using backpropagation and gradient descent. 

Hyperparameters are iteratively modified, and the model's 

performance is continuously observed to prevent overfitting 

[28]. The trained model is evaluated using a testing set and, 

if needed, fine-tuned based on performance insights. Once 

the desired criteria are met, the model can be deployed in 

real MIMO-NOMA systems for power allocation 

improvements, achieved through a learning mechanism 

balancing complexity and generalization capability.  

5. Deep Learning for Energy Efficiency and Sum 

Data Rate Optimization 

This section introduces an optimization model combining 

MLP and CNN frameworks, leveraging advanced deep 

learning techniques to enhance the MIMO-NOMA system. 

The study focuses on a deep learning-centered strategy, 

evaluating the robustness of the proposed framework for 

optimizing sum data rates and energy efficiency. The 

approach treats the problem as a function effectively 

processed by a DNN, employing training and testing 

algorithms (Algorithm 1 and Algorithm 2) for 

implementation and evaluation. 

Algorithm 1 MLP-CNN framework for MIMO-

NOMA (Training phase) 

Step 1: set the simulation parameters. The input should be 

the channel vector ℎ𝑚 and precoding matrix P  
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Step 2: For the deep neural networks (MLP-CNN) 

framework, generate a wireless channel, then add some 

noise (AWGN) and other distortion.   

Step 3: Generate the training samples' channel vector ℎ𝑚 

and precoding matrix P 

Step 4: set the framework of the proposed neural network, 

such as weights, learning rate, solver and batch size   

Step 5: Train the MLP-CNN model using the training 

samples to approximate problem (8) based on the 

suggested learning mechanism. 

Step 6: Update the weights 𝑤 and the output layers of the 

CNN model 

 

Algorithm 2 MLP-CNN framework for MIMO-

NOMA (Testing phase) 

Step 1: load the trained MLP-CNN framework. 

Step 2: Generate a wireless channel, then add some noise 

(AWGN) and other distortion for this channel. 

Step 3: start processing the proposed model. 

Step 4: update the outputs for each layer MLP-CNN.   

Step 5: Calculate the power allocation factor, then 

compute the power allocation coefficient βm,k 

Step 6: Return the precoding matrix P and power 

allocation coefficient βm,k 

6. Results and Analysis  

In this section, we evaluate the performance of the proposed 

approach designed to optimize the sum data rate and energy 

efficiency in the MIMO-NOMA system. The study utilizes 

the 5G Vienna simulator and Python for simulations, 

employing a dataset containing channel vectors and power 

factors. A novel strategy is introduced to implement the 

MLP-CNN framework, considering specific considerations 

for determining the training sequence length. The 

simulation focuses on a MIMO-NOMA system with a Base 

Station located at the center of a circular area with a 

minimum radius of 500 meters, hosting 512 stationary users 

randomly distributed within this area. 

In the simulation section, the authors consider a propagation 

channel known as the Nakagami Rice channel. This channel 

model comprises Line of sight and Rayleigh fading 

components. The Nakagami-Rice model is a versatile tool 

for modelling channels with a mix of multipath and line-of-

sight features, offering a balance between simplicity and 

realism. Each user in the system is assumed to have a Rician 

factor of 10 dB. 

 

 

Fig.3. demonstrates the MIMO-NOMA deep learning 

framework's sum data rate performance for training 

sequence lengths of 16 and 32 bits. 

 

Fig. 4. illustrates the data rate per cluster for various 

learning rate values (0.1, 0.02, 0.01 and 0.001) and the 

suggested algorithm (MLP-CNN). 

Furthermore, this study incorporates the arrival and 

departure angles in the analysis, representing crucial spatial 

information in the MIMO-NOMA system. by establishing 

the total transmit Power as 18 d.Bm. Additionally, we set 

the power consumed by each radio frequency 𝑃𝑅𝐹  = 3.00 

mW, Baseband power consumption 𝑃𝐵𝐵 = 20.0 mW, and 

power consumption of analog phase shifters 𝑃𝑆 = .5 mW as 

specific power values. It is worth noting that assuming the 

Signal to noise ratio (SNR) is equal for all users in the 

system. 

6.1. Sum Data Rate Analysis   

This section discusses the SNR versus sum data rate analysis 

in a MIMO-NOMA system optimized using MLP-CNN. 

Fig. 3 shows performance with different training sequences 

and batch sizes, considering L=16 bits and 32 bits and batch 

sizes of 1000 and 500. 
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Fig. 5. illustrates the proposed algorithm MLP-CNN 

framework, the MIMO-NOMA Convolutional Deep 

Neural Network (CDNN)-based approach [26], and the 

Long Short-Term Memory (LSTM) NOMA-based scheme 

[25], compared regarding their sum data rate performances. 

Results indicate higher SNR improves the sum data rate, 

with longer training sequences and larger batch sizes 

contributing to better performance. Fig. 4 presents the sum 

data rate across SNR values with varying learning rates, 

suggesting a lower learning rate achieves data rates closer to 

theoretical capacity. 

 

Fig. 6. Illustrates the cumulative distribution function for 

the data rate per user. For the MLP-CNN algorithm, there 

are two cases: simulation result and perfectly trained result. 

Fig. 5 compares data rates per cluster against SNR for 

different schemes, showing the proposed MLP-CNN 

outperforms LSTM-NOMA and CDNN based MIMO-

NOMA schemes. The proposed model is effective for 

systems with mobile users, demonstrating efficiency over 

systems with stationary users. The analysis focuses on L=32 

and a batch size of 1000, assessing the overall system's 

performance and highlighting the proposed model's 

effectiveness in time-variant and time-invariant systems. As 

depicted in fig. 6, the simulation results closely align with 

the ideally trained outcomes, underscoring the effectiveness 

of the proposed method. 

The proposed MLP-CNN framework exhibits reliability and 

robustness, performing effectively even in scenarios with 

severe distortions. Additionally, it is observed that the 

cumulative distribution function of the data rate curve 

approaches 1 when the rate of data for the user can reach 0.9 

Bit/Hz/Sec. The rapid convergence is achieved by the MLP-

CNN scheme, indicating its ability to adapt and optimize 

system performance quickly. 

6.2. Energy Efficiency Analysis 

This section assesses the energy efficiency of the proposed 

system, leveraging results from multiple training rounds. 

The SNR versus energy efficiency plot in Fig. 7 illustrates 

that the MIMO-NOMA system surpasses the MIMO-OMA 

scheme, especially for stationary users. The observed 

improvement in energy efficiency with rising SNR 

underscores the advantages of the proposed MIMO-NOMA 

approach. 

 

Fig. 7. shows Energy efficiency against SNR comparison 

between (MIMO-NOMA and MIMO-OMA) methods. 

Fig. 8 presents a comparison between the average MIMO-

NOMA scheme and the CDNN scheme in terms of energy 

efficiency. It is evident from the figure that the CDNN-

based method achieves higher energy efficiency compared 

to the typical MIMO-NOMA scheme. This result indicates 

the superior efficiency of the CDNN algorithm in 

optimizing energy utilization within the system. Fig. 9 

displays the plot of SNR versus energy efficiency for a 

system that considers mobile users. The analysis reveals that 

the energy efficiency of the proposed framework-based 

MIMO-NOMA system improves as the SNR increases. 

Insightfully, the proposed framework demonstrates superior 

power allocation performance, enabling the MIMO-NOMA 

to transmit Power efficiently. The presented method does 

not require an online operation because the system is 

sufficiently prepared through its training stage, excluding 

the necessity for repeated algorithmic processes. This result 

reduces energy consumption and computational resources 
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compared to previous approaches requiring repeated 

algorithm execution. 

 

Fig. 8. compares energy efficiency against SNR between the 

MIMO-NOMA scheme with CDNN and the MIMO-

NOMA based approach. 

 

Fig. 9. shows energy efficiency against SNR comparison 

between CDNN based MIMO-NOMA scheme [26], 

MIMO-OMA method [27] and LSTM-NOMA scheme.   

Furthermore, the proposed technique surpasses the LSTM-

NOMA approach, leveraging the capability of MIMO to 

accommodate multiple users with a more significant number 

of antennas at the base station. Despite the LSTM-NOMA 

scheme benefiting from deep learning methods, the 

proposed approach demonstrates superior performance. 

 

Fig. 10. compares energy efficiency against SNR among 

the proposed MLP-CNN algorithm, CDNN-based MIMO-

NOMA, and MIMO-NOMA methods. 

6.3. Deep Learning and Training Progress Analysis 

This section investigates the training and testing of the 

proposed MLP-CNN model, which incorporates deep 

learning algorithms into the MIMO-NOMA system. The 

learning mechanism involves training the model using the 

provided dataset, optimizing its weights and biases through 

backpropagation, and improving its performance. The 

objective is to strike a balance between the complexity of 

the model and its generalization capability, ensuring it 

avoids overfitting and achieves the desired enhancements in 

energy efficiency. During the initial stage of training, the 

study observed that the minimum mean square error graph 

for both the validation loss and training loss ranges between 

0.40 and 0.35, as depicted in Fig. 10. 

 

Fig. 11. Shows the first phase of training Mean square 

error (MSE) for training and validation data of the 

proposed MLP-CNN framework. 

In the second training phase, as shown in Fig. 11, the authors 

analyse the MSE against time, with the number of epochs 

reaching approximately 400 for both the training and testing 

datasets. These training and testing progressions 

demonstrate the iterative improvement and convergence of 
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the model, as evidenced by the decrease in MSE and the 

satisfactory performance achieved by the MLP-CNN model. 

 

Fig. 12. Shows the second phase of training MSE for 

training and testing data of the proposed MLP-CNN 

framework. 

 

Fig. 13. Illustrates the loss of validation and training results 

over time for the proposed MLP-CNN framework model. 

 

Fig. 14. shows the accuracy of the first step of the training 

phase for the proposed MLP-CNN framework for both the 

validation and training results. 

Fig. 12 illustrates the MSE curve for the proposed MLP-

CNN model consistently stays below one, indicating 

excellent performance after only a few training steps. This 

figure demonstrates the comprehensive training and the 

reliability of MIMO-NOMA scheme. The substantial 

difference between validation and training errors exceeds 

expectations, highlighting the exceptional generalization 

ability of the proposed framework showcasing high 

accuracy in learning network inputs. 

The graph shows the validation and training results loss over 

time for the proposed framework. It provides insights into 

how the loss changes throughout the operation time of the 

model in Fig. 13. In the initial stage of learning, the accuracy 

curve shows a steady increase over time, as depicted in Fig. 

14. Both the validation and training results exhibit 

improvement, rising from 60% to 80%. This progress is 

observed during the first stage of training. In the second 

stage, the accuracy further increases to 88% for both the 

validation and training results, as illustrated in Fig. 15. 

These findings highlight the effectiveness of the proposed 

framework in achieving higher accuracy and improved 

performance. 

 

Fig. 15. shows the accuracy of the second step of the 

training phase for the proposed MLP-CNN framework for 

both the validation and training results. 

 

Fig. 16. Shows the Accuracy of the training phase 

progression for the proposed MLP-CNN framework for 

both the Validation and Training results. 

Fig. 16. reveals that in the final stages of training, both the 
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validation and training datasets achieve maximum accuracy, 

surpassing 93%. This result indicates that the accuracy 

curve has reached its peak performance. Additionally, Fig. 

17 demonstrates that the training dataset's loss decreases to 

less than 0.001 in the final stages of training, indicating an 

improvement compared to the earlier training phases. These 

results provide strong evidence that the proposed framework 

can achieve very high accuracy and superior performance 

when deep learning methods are integrated with both 

MIMO and NOMA techniques. 

 

Fig. 17. Shows the training loss and testing loss for the last 

step of the proposed MLP-CNN framework. 

7. Conclusion 

This research presents an effective strategy for optimizing 

power allocation that integrates deoptimizing learning with 

the MIMO-NOMA system. The proposed approach 

employs the MLP-CNN framework with tailored activation 

functions in each layer. The framework undergoes offline 

and online learning stages to capture crucial spatial features 

of the MIMO-NOMA system and ensure efficient model 

training. By using deep learning descriptive and mapping 

capabilities, the presented method facilitates precise 

estimation of channel state information, enhancing user 

performance. The power allocation optimization challenge 

is effectively tackled through the approximation prowess of 

the MLP-CNN model. Thorough simulations have 

substantiated the superior performance and resilience of the 

CNN-based MIMO-NOMA framework. Future work will 

focus on extending the research to time-varying fading 

scenarios and Intelligent Reflected Surfaces, incorporating 

cognitive radio networks, and addressing security and 

system capacity concerns.  
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